他汀类药物在肝硬化相关并发症中的防治作用
The Role of Statins in the Prevention and Treatment of Complications Related to Cir-rhosis
DOI: 10.12677/ACM.2023.132324, PDF, HTML, XML, 下载: 172  浏览: 293 
作者: 刘鑫鹏, 张跃新*:新疆医科大学第一附属医院,新疆 乌鲁木齐
关键词: 他汀类药物肝硬化并发症防治Statins Liver Cirrhosis Complication Prophylaxis and Treatment
摘要: 他汀类药物作为羟甲基戊二酰辅酶(HMG-CoA)还原酶抑制剂,通过抑制甾醇生物合成途径中的关键步骤、减少胆固醇生物合成,故目前作为降低血脂的重要药物、显著降低心血管事件发生率,而近些年来,关于他汀类药物在慢性肝病、肝硬化及相关并发症等防治领域研究逐渐增多。他汀类药物除调节血脂外,还有抗炎、抗氧化、免疫调节、抗细菌真菌等作用,他汀类药物在防治肝硬化相关并发症方面显露出巨大潜能。本文就目前关于他汀类药物在防治肝硬化并发症方面研究做一综述探讨。
Abstract: As a hydroxymethylglutaryl coenzyme (HMG-CoA) reductase inhibitor, statins reduce cholesterol biosynthesis by inhibiting key steps in the sterol biosynthesis pathway. Therefore, they are cur-rently used as important drugs to reduce blood lipids and significantly reduce the incidence of car-diovascular events. In recent years, research on statins in the prevention and treatment of chronic liver disease, cirrhosis and related complications has gradually increased. Statins not only regulate blood lipids, but also have anti-inflammatory, anti-oxidation, immune regulation, anti-bacterial and fungal effects. Statins have shown great potential in the prevention and treatment of cirrho-sis-related complications. This article reviews the current research on statins in the prevention and treatment of complications of cirrhosis.
文章引用:刘鑫鹏, 张跃新. 他汀类药物在肝硬化相关并发症中的防治作用[J]. 临床医学进展, 2023, 13(2): 2320-2324. https://doi.org/10.12677/ACM.2023.132324

1. 他汀类药物在门静脉高压防治中的作用

门静脉高压(Portal Hypertension, PH)是肝硬化患者最常见的并发症,其特征是门静脉和下腔静脉(Inferior Vena Cava, IVC)之间的压力梯度增加,即所谓的门静脉压力梯度(Portal Pressure Gradient, PPG)。正常PPG为1~5 mmHg,若等于或高于6 mmHg则提示门静脉高压。而门静脉高压进一步发展则会引起脾肿大、血小板减少和脾功能亢进、门体侧支循环和胃食管静脉曲张、静脉曲张或门脉高压性胃病或肠病引起的胃肠道出血、腹水,门静脉高压及相关并发症是肝硬化患者死亡的主要原因 [1] 。但目前仅有少数药物被证实可有效降低门静脉高压,如非选择性β受体阻滞剂(NSBB)。而他汀类药物在这方面似乎是一种有希望的新选择。国外一项前瞻性随机单盲研究 [2] 表明:阿托伐他汀和普萘洛尔治疗的肝硬化患者的HVPG下降明显高于仅用普萘洛尔治疗的患者。一项动物模型试验 [3] 给予肝硬化门脉高压症和非肝硬化门脉高压症的两种大鼠模型阿托伐他汀处理后发现:阿托伐他汀可显著降低肝硬化门脉高压症组大鼠的门脉压力,内脏和全身血管阻力保持不变,而相比之下,在非肝硬化门脉高压症大鼠组,门脉压力却有所增加。表明肝硬化和非肝硬化门静脉高血压的新生血管生成机制不同。他汀类药物可抑制肝硬化新生血管生成,可能是由于抑制非典型Hedgehog信号转导等机制所致 [4] 。Priscila等 [5] 一项随机对照试验发现每天摄入40 mg辛伐他汀3个月可导致55%患者的HVPG显著降低。而在国外一项代偿期HCV相关肝硬化患者的单项观察性研究中得出结论 [6] :使用他汀类药物可使门静脉高压相关出血的风险降低61% (RR, 0.39; 95% CI, 0.19~0.79)。因此在针对肝硬化门静脉高压标准治疗中加入他汀类药物可能更有效降低HVPG、并减少门静脉高压相关并发症的发生,增加肝硬化患者生存率。

2. 他汀类药物在肝性脑病防治中的作用

肝性脑病(HE)是肝硬化的常见严重并发症,超过40%的肝硬化患者会出现HE [7] ,主要表现为广泛的神经精神异常,从轻度认知障碍到明显的定向障碍、困惑和昏迷。HE的临床和经济负担相当大,它极大地降低了患者生活质量,且随着HE的发展,患者的一年总死亡率可能上升到>60% [8] 。但其病因尚不完全清楚,氨学说仍为当前主流学说,而门体分流使大脑暴露于氨以及与HE神经病理学相关的毒素,炎症又可增强氨诱导的神经毒性。肝硬化中引起门体分流主要包括以下两点 [9] :门静脉高压会机械地迫使血液通过门体侧支流出肝脏引起分流;肝窦纤维化破坏了肝细胞与血液内容物之间的正常相互作用、引起肝内门体分流。而他汀类药物除可降低门静脉压力外,还有抗炎、免疫调节等作用,故使用他汀类药物防治HE的作用理论上是合理的。台湾的黄惠春 [10] 等在大鼠试验中发现普伐他汀可有效改善急性肝衰竭所致的HE。但目前国内外尚无大型临床试验证明他汀类药可明确预防HE及降低HE患者死亡率,故他汀类药物在防治HE方面的潜在益处仍需要严格设计的随机对照试验中进行研究。

3. 他汀类药物在肝癌防治中的作用

肝细胞癌(HCC)是世界上最致命的癌症之一,HCC是第六大流行癌症,是全球癌症相关死亡率第三高的癌症 [11] ,每年约有750,000例新发HCC病例 [12] 。各种病因与HCC的发生发展有关,包括慢性病毒性肝炎、自身免疫性肝病、血色素沉着症、过量饮酒、非酒精性脂肪性肝病等。近年来,一些观察性研究表明,他汀类药物可能会降低HCC的风险,他汀类药物在对HCC的发展中可能表现出多种作用,包括抗炎、抗纤维化、抗增殖等特性。慢性肝脏炎症是肝癌发生的重要驱动因素 [13] 。慢性损伤诱导肝细胞凋亡,导致炎症介导损伤相关分子的释放,包括TNF、IL-6、IL-1β、活性氧(ROS)并触发纤维化HSC (肝星状细胞)激活 [14] ,而他汀类药物可通过降低IL-6水平、下调金属蛋白酶活性并导致促炎TH1细胞因子向TH2细胞因子抗炎反应转变,从而发挥抗炎和免疫调节作用 [15] 。同时有研究表明 [16] ,他汀类药物治疗可显著降低TNF-α、IL-6和细胞间粘附分子1的促炎信使RNA (mRNA)表达、ROS的产生,从而减轻肝脏炎症。肝内皮Krüppel样因子2 (KLF-2)是在内皮细胞和循环免疫细胞中表达的转录因子,通过诱导内皮型一氧化氮合酶(eNOS)和血栓调节蛋白为内皮细胞提供保护 [17] 。给予辛伐他汀后显示肝硬化肝脏中KLF-2及其血管保护靶基因、eNOS和血栓调节蛋白的水平升高 [18] 。KLF-2还抑制NF-κB转录活性,作为炎症和纤维化的调节剂 [19] 。同时有研究发现 [20] 在肝硬化大鼠模型中,通过给予他汀类药物、可使KLF-2表达上调,限制纤维化HSC活化,减少肝氧化应激,减弱门静脉血流和肝血管阻力,从而改善内皮功能并预防肝纤维化。钟利元等人 [21] 发现氟伐他汀可通过旁分泌抑制脂肪变性诱导的HSC活化肝细胞的作用,减弱促纤维化基因表达和α-SMA在HSC中的蛋白表达,从而导致抗纤维化作用。他汀类药物除抗增殖、抗炎和抗纤维化作用外,发现具有抗肿瘤特性,且他汀类药物的抗肿瘤作用可能与不同类型癌症中的甲羟戊酸途径介导和非甲羟戊酸途径介导的机制有关 [22] 。HMG-CoA还原酶作为甲羟戊酸途径的限速酶,可被他汀类药物抑制、从而阻断胆固醇的合成,使用他汀类药物后甲羟戊酸途径下游代谢物合成减少,阻碍Ras和Rho等小GTP酶的异戊二烯化及其功能,从而调节细胞增殖、分化和存活。研究发现 [23] ,他汀类药物治疗时可使致癌通路受到抑制,包括Ras-MAPK和PI3K/Akt通路。辛伐他汀可通过减少周期蛋白依赖性激酶(CDK)、细胞周期蛋白的表达以及增强肿瘤HepG2和Huh7细胞中p19和p27的表达来诱导细胞周期的G0/G1期停滞,从而达到抗肿瘤细胞增殖效果 [17] 。他汀类药物可阻断原癌转录因子Myc的磷酸化和活化,从而抑制癌症增殖 [18] 。在HepG2肝细胞癌细胞中,阿托伐他汀通过直接抑制PI3K/Akt通路增加肿瘤抑制因子miRNA-145的表达,增加p53、caspase-9活性和c-myc的表达,从而导致癌细胞凋亡 [24] 。尽管现有的一些观察性研究和实验性研究已经揭示了他汀类药物在肝癌治疗中的预防和治疗潜力,但仍需进一步的前瞻性干预研究和随机对照试验来证实这些观察结果。

4. 他汀类药物在肝硬化相关感染中的防治

在肝硬化患者中,感染会增加死亡率并提高相关治疗费用。而肝硬化患者最常并发细菌感染。他汀类药物的应用在各种细菌感染中已有广泛研究。有研究发现 [25] ,使用他汀类药物可明显降低社区获得性菌血症的风险。一项回顾性研究报告显示 [26] ,长期优先使用他汀类药物提高了菌血症患者的生存率。同时在国外一项纳入19,379名代偿期肝硬化患者的回顾性队列研究中发现:相比未使用他汀类药物的肝硬化患者,他汀类药物使用者的感染率(主要是自发性细菌性腹膜炎)或死亡率显著降低 [27] 。以上证明了他汀类药物在肝硬化相关感染中(主要为细菌感染)有作为辅助治疗的潜力。

5. 小结

综上所述,作为当前调节血脂主要药物的他汀类药物,在防治肝硬化相关并发症方面存在巨大的潜能,但仍需更大标本量的临床试验严谨验证。

NOTES

*通讯作者Email: zhangyx3103@163.com

参考文献

[1] Tsochatzis, E.A., Bosch, J. and Burroughs, A.K. (2014) Liver Cirrhosis. The Lancet, 383, 1749-1761.
https://doi.org/10.1016/S0140-6736(14)60121-5
[2] Bishnu, S., Ahammed, Sk.M., Sarkar, A., et al. (2018) Ef-fects of Atorvastatin on Portal Hemodynamics and Clinical Outcomes in Patients with Cirrhosis with Portal Hypertension: A Proof-of-Concept Study. European Journal of Gastroenterology & Hepatology, 30, 54-59.
https://doi.org/10.1097/MEG.0000000000001006
[3] Uschner, F.E., Ranabhat, G., Choi, S.S., et al. (2015) Statins Activate the Canonical Hedgehog-Signaling and Aggravate Non-Cirrhotic Portal Hypertension, But Inhibit the Non-Canonical Hedgehog Signaling and Cirrhotic Portal Hypertension. Scientific Reports, 5, Article No. 14573.
https://doi.org/10.1038/srep14573
[4] Xie, G.H., Choi, S.S., Syn, W.-K., et al. (2013) Hedgehog Signalling Reg-ulates Liver Sinusoidal Endothelial Cell Capillarisation. Gut, 62, 299-309.
https://doi.org/10.1136/gutjnl-2011-301494
[5] Pollo-Flores, P., Soldan, M., Santos, U.C., et al. (2015) Three Months of Simvastatin Therapy vs. Placebo for Severe Portal Hypertension in Cirrhosis: A Randomized Controlled Trial. Digestive and Liver Disease, 47, 957-963.
https://doi.org/10.1016/j.dld.2015.07.156
[6] Mohanty, A., Tate, J.P. and Garcia-Tsao, G. (2016) Statins Are Associated with a Decreased Risk of Decompensation and Death in Veterans with Hepatitis C-Related Compensated Cirrhosis. Gastroenterology, 150, 430-440.E1.
https://doi.org/10.1053/j.gastro.2015.10.007
[7] D’Amico, G., Garcia-Tsao, G. and Pagliaro, L. (2006) Natural History and Prognostic Indicators of Survival in Cirrhosis: A Systematic Review of 118 Studies. Journal of Hepatology, 44, 217-231.
https://doi.org/10.1016/j.jhep.2005.10.013
[8] Jepsen, P., Ott, P., Andersen, P.K., et al. (2010) Clinical Course of Alcoholic Liver Cirrhosis: A Danish Population-Based Cohort Study. Hepatology, 51, 1675-1682.
https://doi.org/10.1002/hep.23500
[9] Tapper, E.B., Jiang, Z.G. and Patwardhan, V.R. (2015) Refining the Am-monia Hypothesis: A Physiology-Driven Approach to the Treatment of Hepatic Encephalopathy. Mayo Clinic Proceed-ings, 90, 646-658.
https://doi.org/10.1016/j.mayocp.2015.03.003
[10] Huang, H.-C., Chang, C.-C., Wang, S.-S., et al. (2012) Pravas-tatin for Thioacetamide-Induced Hepatic Failure and Encephalopathy. European Journal of Clinical Investigation, 42, 139-145.
https://doi.org/10.1111/j.1365-2362.2011.02566.x
[11] Ferlay, J., Shin, H.-R., Bray, F., et al. (2010) Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893-2917.
https://doi.org/10.1002/ijc.25516
[12] Jemal, A., Bray, F., Center, M.M., et al. (2011) Global Cancer Statistics. CA: A Cancer Journal for Clinicians, 61, 69-90.
https://doi.org/10.3322/caac.20107
[13] Hoshida, Y., Fuchs, B.C. and Tanabe, K.K. (2012) Prevention of Hepatocellular Carcinoma: Potential Targets, Experimental Models, and Clinical Chal-lenges. Current Cancer Drug Targets, 12, 1129-1159.
https://doi.org/10.2174/156800912803987977
[14] Higashi, T., Friedman, S.L. and Hoshida, Y. (2017) Hepatic Stellate Cells as Key Target in Liver Fibrosis. Advanced Drug Delivery Reviews, 121, 27-42.
https://doi.org/10.1016/j.addr.2017.05.007
[15] Kwak, B., Mulhaupt, F., Myit, S., et al. (2000) Statins as a Newly Recognized Type of Immunomodulator. Nature Medicine, 6, 1399-1402.
https://doi.org/10.1038/82219
[16] Okada, Y., Yamaguchi, K., Nakajima, T., et al. (2013) Rosuvastatin Ameliorates High-Fat and High-Cholesterol Diet-Induced Nonalcoholic Steatohepatitis in Rats. Liver International, 33, 301-311.
https://doi.org/10.1111/liv.12033
[17] Relja, B., Meder, F., Wilhelm, K., et al. (2010) Simvastatin Inhibits Cell Growth and Induces Apoptosis and G0/G1 Cell Cycle Arrest in Hepatic Cancer Cells. International Journal of Molecular Medicine, 26, 735-741.
https://doi.org/10.3892/ijmm_00000520
[18] Cao, Z.W., Fan-Minogue, H., Bellovin, D.I., et al. (2011) MYC Phosphorylation, Activation, and Tumorigenic Potential in Hepatocellular Carcinoma Are Regulated by HMG-CoA Re-ductase. Cancer Research, 71, 2286-2297.
https://doi.org/10.1158/0008-5472.CAN-10-3367
[19] Jha, P. and Das, H. (2017) KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. International Journal of Molecular Sciences, 18, Article 2383.
https://doi.org/10.3390/ijms18112383
[20] Marrone, G., Maeso-Díaz, R., García-Cardena, G., et al. (2015) KLF2 Exerts Antifibrotic and Vasoprotective Effects in Cirrhotic Rat Livers: Behind the Molecular Mechanisms of Statins. Gut, 64, 1434-1443.
https://doi.org/10.1136/gutjnl-2014-308338
[21] Chong, L.-W., Hsu, Y.-C., Lee, T.-F., et al. (2015) Fluvastatin Attenuates Hepatic Steatosis-Induced Fibrogenesis in Rats through Inhibiting Paracrine Effect of Hepatocyte on Hepatic Stellate Cells. BMC Gastroenterology, 15, Article No. 22.
https://doi.org/10.1186/s12876-015-0248-8
[22] Mullen, P.J., Yu, R., Longo, J., et al. (2016) The Interplay between Cell Signalling and the Mevalonate Pathway in Cancer. Na-ture Reviews Cancer, 16, 718-731.
https://doi.org/10.1038/nrc.2016.76
[23] Hanai, J., Doro, N., Sasaki, A.T., et al. (2012) Inhibition of Lung Cancer Growth: ATP Citrate Lyase Knockdown and Statin Treatment Leads to Dual Blockade of Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol-3-Kinase (PI3K)/AKT Pathways. Journal of Cellular Physiology, 227, 1709-1720.
https://doi.org/10.1002/jcp.22895
[24] Docrat, T.F., Nagiah, S., Krishnan, A., et al. (2018) Atorvastatin Induces MicroRNA-145 Expression in HEPG2 Cells via Regulation of the PI3K/AKT Signalling Pathway. Chemico-Biological Interactions, 287, 32-40.
https://doi.org/10.1016/j.cbi.2018.04.005
[25] Smit, J., López-Cortés, L.E., Thomsen, R.W., et al. (2017) Statin Use and Risk of Community-Acquired Staphylococcus aureus Bacteremia: A Population-Based Case-Control Study. Mayo Clinic Proceedings, 92, 1469-1478.
https://doi.org/10.1016/j.mayocp.2017.07.008
[26] Nseir, W., Mograbi, J., Khateeb, J., et al. (2012) The Impact of Prior Long-Term versus Short-Term Statin Use on the Mortality of Bacteraemic Patients. Infection, 40, 41-48.
https://doi.org/10.1007/s15010-011-0190-9
[27] Motzkus-Feagans, C., Pakyz, A.L., Ratliff, S.M., et al. (2013) Statin Use and Infections in Veterans with Cirrhosis. Alimentary Pharmacology & Therapeutics, 38, 611-618.
https://doi.org/10.1111/apt.12430