|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版) [J]. 临床肝胆病杂志, 2020, 36(2): 277-292.
|
|
[3]
|
Heimbach, J.K., Kulik, L.M., Finn, R.S., et al. (2018) AASLD Guidelines for the Treatment of Hepato-cellular Carcinoma. Hepatology (Baltimore, Md.), 67, 358-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lim, K.C., Chow, P.K., Allen, J.C., Siddiqui, F.J., Chan, E.S. and Tan, S.B. (2012) Systematic Review of Outcomes of Liver Re-section for Early Hepatocellular Carcinoma within the Milan Criteria. The British Journal of Surgery, 99, 1622-1629. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
吴孟超, 汤钊猷, 刘彤华, 等. 原发性肝癌规范化病理诊断指南(2015年版) [J]. 临床肝胆病杂志, 2015, 31(6): 833-839.
|
|
[6]
|
Feng, L.H., Dong, H., Lau, W.Y., et al. (2017) Novel Micro-vascular Invasion-Based Prognostic Nomograms to Predict Survival Outcomes in Patients after R0 Resection for Hepa-tocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 143, 293-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Roayaie, S., Blume, I.N., Thung, S.N., et al. (2009) A System of Classifying Microvascular Invasion to Predict Outcome after Resection in Patients with Hepatocellular Carcinoma. Gas-troenterology, 137, 850-855. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhao, H., Chen, C., Fu, X., Yan, X., Jia, W., Mao, L., Jin, H. and Qiu, Y. (2017) Prognostic Value of a Novel Risk Classification of Microvascular Invasion in Patients with Hepatocellu-lar Carcinoma after Resection. Oncotarget, 8, 5474-5486. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lei, Z., Li, J., Wu, D., Xia, Y., Wang, Q., Si, A., Wang, K., et al. (2016) Nomogram for Preoperative Estimation of Microvascular Invasion Risk in Hepatitis B Virus-Related Hepatocel-lular Carcinoma within the Milan Criteria. JAMA Surgery, 151, 356-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rodríguez-Perálvarez, M., Luong, T.V., Andreana, L., Meyer, T., Dhillon, A.P. and Burroughs, A.K. (2013) A Systematic Review of Microvascular Invasion in Hepatocellular Carcinoma: Diagnostic and Prognostic Variability. Annals of Surgical Oncology, 20, 325-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xu, X.F., Xing, H., Han, J., Li, Z.L., Lau, W.Y., Zhou, Y.H., Gu, W.M., et al. (2019) Risk Factors, Patterns, and Outcomes of Late Recurrence after Liver Resection for Hepatocellular Carcinoma: A Multicenter Study from China. JAMA Surgery, 154, 209-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Han, J., Li, Z.L., Xing, H., Wu, H., Zhu, P., Lau, W.Y., et al. (2019) The Impact of Resection Margin and Microvascular Invasion on Long-Term Prognosis after Curative Resection of Hepatocellular Carcinoma: A Multi-Institutional Study. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 21, 962-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, H., Du, P.C., Wu, M.C. and Cong, W.M. (2018) Postopera-tive Adjuvant Transarterial Chemoembolization for Multinodular Hepatocellular Carcinoma within the Barcelona Clinic Liver Cancer Early Stage and Microvascular Invasion. Hepatobiliary Surgery and Nutrition, 7, 418-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, L., Chen, B., Li, Z., Yao, X., Liu, M., Rong, W., Wu, F., et al. (2019) Optimal Postoperative Adjuvant Treatment Strategy for HBV-Related Hepatocellular Carcinoma with Micro-vascular Invasion: A Propensity Score Analysis. OncoTargets and Therapy, 12, 1237-1247. [Google Scholar] [CrossRef]
|
|
[15]
|
Song, L., Li, J.W. and Luo, Y. (2021) The Importance of a Nonsmooth Tumor Margin and Incomplete Tumor Capsule in Predicting HCC Microvascular Invasion on Preoperative Imaging Ex-amination: A Systematic Review and Meta-Analysis. Clinical Imaging, 76, 77-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Banerjee, S., Wang, D.S., Kim, H.J., Sirlin, C.B., Chan, M.G., Korn, R.L., Rutman, A.M., et al. (2015) A Computed Tomography Radiogenomic Biomarker Predicts Microvascular In-vasion and Clinical Outcomes in Hepatocellular Carcinoma. Hepatology (Baltimore, Md.), 62, 792-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, T., Pandey, G., Xu, L., Chen, W., Gu, L., Wu, Y. and Chen, X. (2020) The Value of TTPVI in Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancer Management and Research, 12, 4097-4105. [Google Scholar] [CrossRef]
|
|
[18]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G., Granton, P., Zegers, C.M., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer (Oxford, England: 1990), 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gillies, R., Kinahan, P. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lambin, P., Leijenaar, R.T.H., Deist, T.M., Peerlings, J., de Jong, E.E.C., van Timmeren, J., Sanduleanu, S., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personal-ized Medicine. Nature Reviews. Clinical Oncology, 14, 749-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ji, G.W., Zhu, F.P., Xu, Q., Wang, K., Wu, M.Y., Tang, W.W., Li, X.C. and Wang, X.H. (2019) Machine-Learning Analy-sis of Contrast-Enhanced CT Radiomics Predicts Recurrence of Hepatocellular Carcinoma after Resection: A Mul-ti-Institutional Study. EBioMedicine, 50, 156-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shan, Q.Y., Hu, H.T., Feng, S.T., Peng, Z.P., Chen, S.L., Zhou, Q., Li, X., et al. (2019) CT-Based Peritumoral Radiomics Signatures to Predict Early Recurrence in Hepatocellular Carcinoma after Curative Tumor Resection or Ablation. Cancer Imaging, 19, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Mokrane, F.Z., Lu, L., Vavasseur, A., Otal, P., Peron, J.M., Luk, L., et al. (2020) Radiomics Machine-Learning Signature for Diagnosis of Hepatocellular Carcinoma in Cirrhotic Patients with Indeterminate Liver Nodules. European Radiology, 30, 558-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chong, H.H., Yang, L., Sheng, R.F., Yu, Y.L., Wu, D.J., Rao, S.X., Yang, C. and Zeng, M.S. (2021) Multi-Scale and Multi-Parametric Radiomics of Gadoxetate Disodium-Enhanced MRI Predicts Microvascular Invasion and Outcome in Patients with Solitary Hepatocellular Carcinoma ≤ 5 cm. European Radiology, 31, 4824-4838. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hu, M.J., Yu, Y.X., Fan, Y.F. and Hu, C.H. (2021) CT-Based Radiomics Model to Distinguish Necrotic Hepatocellular Carcinoma from Pyogenic Liver Abscess. Clinical Radiology, 76, 161.e11-161.e17. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xu, X., Zhang, H.L., Liu, Q.P., Sun, S.W., Zhang, J., Zhu, F.P., Yang, G., et al. (2019) Radiomic Analysis of Contrast-Enhanced CT Predicts Microvascular Invasion and Outcome in Hepatocellular Carcinoma. Journal of Hepatology, 70, 1133-1144. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, X., Ruan, S., Xiao, W., Shao, J., Tian, W., Liu, W., Zhang, Z., et al. (2020) Contrast-Enhanced CT Radiomics for Preoperative Evaluation of Microvascular Invasion in Hepatocel-lular Carcinoma: A Two-Center Study. Clinical and Translational Medicine, 10, e111. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Greenspan, H., Ginneken, B.V. and Summers, R.M. (2016) Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35, 1153-1159. [Google Scholar] [CrossRef]
|
|
[29]
|
Huang, S., Yang, J., Fong, S. and Zhao, Q. (2020) Artificial Intel-ligence in Cancer Diagnosis and Prognosis: Opportunities and Challenges. Cancer Letters, 471, 61-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhu, Y., Wang, M., Yin, X., Zhang, J., Meijering, E. and Hu, J. (2022) Deep Learning in Diverse Intelligent Sensor Based Systems. Sensors (Basel, Switzerland), 23, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ioannou, G.N., Tang, W., Beste, L.A., Tincopa, M.A., Su, G.L., Van, T., Tapper, E.B., et al. (2020) Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients with Hepatitis C Cirrhosis. JAMA Network Open, 3, e2015626. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wu, Y., White, G.M., Cornelius, T., Gowdar, I., Ansari, M.H., Supanich, M.P. and Deng, J. (2020) Deep Learning LI-RADS Grading System Based on Contrast Enhanced Mul-tiphase MRI for Differentiation between LR-3 and LR-4/LR-5 Liver Tumors. Annals of Translational Medicine, 8, 701. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, Q.P., Xu, X., Zhu, F.P., Zhang, Y.D. and Liu, X.S. (2020) Prediction of Prognostic Risk Factors in Hepatocellular Carcinoma with Transarterial Chemoembolization Using Mul-ti-Modal Multi-Task Deep Learning. EClinicalMedicine, 23, Article ID: 100379. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, W., Chen, Q., Iwamoto, Y., Han, X., Zhang, Q., Hu, H., Lin, L. and Chen, Y.W. (2019) Deep Learning-Based Radiomics Models for Early Recurrence Prediction of Hepatocel-lular Carcinoma with Multi-Phase CT Images and Clinical Data. Annual International Conference of the IEEE Engineer-ing in Medicine and Biology Society, Berlin, 23-27 July 2019, 4881-4884. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhou, Q., Zhou, Z., Chen, C., Fan, G., Chen, G., Heng, H., Ji, J. and Dai, Y. (2019) Grading of Hepatocellular Carcinoma Using 3D SE-DenseNet in Dynamic Enhanced MR Images. Computers in Biology and Medicine, 107, 47-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yasaka, K., Akai, H., Abe, O. and Kiryu, S. (2018) Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-Enhanced CT: A Preliminary Study. Radiology, 286, 887-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Jiang, Y.Q., Cao, S.E., Cao, S., Chen, J.N., Wang, G.Y., Shi, W.Q., Deng, Y.N., et al. (2021) Preoperative Identification of Microvascular Invasion in Hepatocellular Carcinoma by XGBoost and Deep Learning. Journal of Cancer Research and Clinical Oncology, 147, 821-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, S.C., Lai, J., Huang, J.Y., Cho, C.F., Lee, P.H., Lu, M.H., Yeh, C.C., Yu, J. and Lin, W.C. (2021) Predicting Microvascular Invasion in Hepatocellular Carcinoma: A Deep Learn-ing Model Validated across Hospitals. Cancer Imaging: The Official Publication of the International Cancer Imaging Society, 21, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Vorontsov, E., Molchanov, P., Gazda, M., Beckham, C., et al. (2022) Towards Annotation-Efficient Segmentation via Image-to-Image Translation. Medical Image Analysis, 82, Article ID: 102624. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yang, Z. and Li, S. (2022) Dual-Path Network for Liver and Tumor Segmentation in CT Images Using Swin Transformer Encoding Approach. Current Medical Imaging.
|
|
[41]
|
Pettit, R.W., Marlatt, B.B., Corr, S.J., Havelka, J. and Rana, A. (2022) nnU-Net Deep Learning Method for Segmenting Pa-renchyma and Determining Liver Volume from Computed Tomography Images. Annals of Surgery Open, 3, e155. [Google Scholar] [CrossRef]
|
|
[42]
|
Guo, X., Schwartz, L.H. and Zhao, B. (2019) Automatic Liver Segmentation by Integrating Fully Convolutional Networks into Active Contour Models. Medical Physics, 46, 4455-4469. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, L., Wu, M., Li, R., Xu, X., Zhu, C. and Feng, X. (2022) MVI-Mind: A Novel Deep-Learning Strategy Using Computed Tomography (CT)-Based Radiomics for End-to-End High Efficiency Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers (Basel), 14, Article No. 2956. [Google Scholar] [CrossRef] [PubMed]
|