伴FLT3突变的AML的治疗进展
Progress in the Treatment of AML with FLT3 Mutation
DOI: 10.12677/ACM.2023.1351155, PDF, HTML, XML, 下载: 206  浏览: 274 
作者: 何 君:青海大学研究生院,青海 西宁;罗 伟*:青海大学附属医院血液科,青海 西宁
关键词: 急性髓系白血病FLT3突变靶向治疗Acute Myeloid Leukemia FLT3 Mutation Targeted Therapy
摘要: 急性髓系白血病(AML)是一种来源于造血干细胞或祖细胞的恶性克隆性、增殖性疾病,致残率和致死率极高。大约30%的AML病人存在FLT3基因的突变,其中ITD是最主要的一种。FLT3-ITD基因突变可导致白细胞增多,且预后差。AML的治疗近年来取得较大进展,靶向治疗与高强度的化学药物结合,是一种有效挽救性治疗方法,并且可作为同种异体移植的桥梁。现简要综述伴FLT3突变的AML的治疗进展。
Abstract: Acute myeloid leukemia (AML) is a malignant clonal and proliferative disease derived from hema-topoietic stem cells or progenitor cells, with high morbidity and mortality. About 30% of AML pa-tients develop mutations in the FLT3 gene, and ITD mutations are one of the most common types of FLT3 mutations. Patients with the FLT3-ITD mutation have high leukocyte expression and a poor prognosis. The treatment of acute myeloid leukemia (AML) has made great progress in recent years. Targeted therapy combined with intense chemotherapy is a viable option for salvage treatment of AML and can serve as a bridge to allotransplantation. This article reviews the progress in the treatment of AML with FLT3 mutations.
文章引用:何君, 罗伟. 伴FLT3突变的AML的治疗进展[J]. 临床医学进展, 2023, 13(5): 8254-8260. https://doi.org/10.12677/ACM.2023.1351155

1. 引言

急性髓系白血病(Acute myeloid leukemia, AML)是成人中最常见的白血病,它的发病率随着年龄的增加而呈逐渐增长的趋势 [1] ,2017年之前,AML是所有白血病中最多见的一种类型,目前慢性淋巴细胞白血病成为了最多见的一种类型,但是AML仍是在所有的白血病分型中死亡率最高的一种 [2] 。

AML是一种异质性肿瘤,主要是来源于造血干细胞,其发病机制是因为体细胞突变和染色体异位造成了髓系母细胞的异常分化,从而破坏了骨髓的正常造血功能,同时也会破坏其他造血组织的功能,这就导致了异常增殖的白血病细胞浸润破坏了其他正常的组织和器官。AML的临床表现主要是三系减少所导致的,比如贫血、感染和出血,严重的病人会有髓外浸润的表现,甚至累及神经系统 [3] 。

在所有的AML类型中,大约有30%的患者伴有FLT3突变 [4] ,针对伴FLT3突变的AML患者,采用化学药物及自体干细胞移植等方法都无法达到预期效果,从而引起了对FLT3抑制剂的靶向治疗的广泛关注,但FLT3抑制剂因其具有原发性或继发性耐药而无法持续发挥作用,且其作用受到原发性或继发性耐药的制约 [5] 。本综述主要介绍伴FLT3突变的AML的治疗进展。

2. FLT3突变形式及致病机制

Nakao等于1996年首先发现了FLT3近膜区的一系列重复序列,之后又有文献发现FLT3的突变也涉及了酪氨酸激酶域(FLT3-TKD)的点突变 [6] 。

FLT3-ITD突变指近膜结构域插入氨基酸重复串联序列,通常发生在近膜区的精氨酸残基595附近。前期研究发现:1) FLT3近膜区存在自抑制;2) FLT3-ITD与TAT5、RAS/MAPK、P73K/AKT等信号通路存在差异,FLT3可被RNAi诱导产生自噬;3) FLT3-ITD可诱导FLT3产生不依赖于配体的磷酸化,活化TAT5,RAS,PU.1等,使TGF-β1/C/EBP1/PU.2/Akt通路下调,使其在AML中生存、增殖、分化、耐药等方面发挥重要作用 [7] [8] [9] [10] 。

FLT3/D836和FLT3/7836是酪氨酸激酶区内单个氨基酸的缺失或插入,其突变位点均未构成激活环,能够抑制ATP、底物与激酶复合体的结合,使激活环发生构象变化,从而引起激酶的过度激活 [11] 。TKD基因变异与FLT3抑制剂的抗药性密切相关,因此TKD基因变异与FLT3抑制剂抗药性的关系研究已经备受关注。

3. 伴FLT3突变的AML的治疗进展

3.1. FLT3基因突变的AML患者骨髓移植

由于FLT3-ITD突变的AML患者的预后较差,异体造血干细胞移植(allo-HSCT)通常是这类患者的首选治疗方法 [12] ,《中国2011版NAML诊治指南》将其列为这类病人的首选疗法,有望进一步提升这类病人的治疗效果 [13] 。但是allo-HSCT是否可以显著改善FLT3-ITD突变的AML患者的生存率,目前存在争议。Maziarz等研究发现,FLT3-ITD突变的AML患者在经过allo-HSCT治疗后,存活率有所改善,但是他们的结局仍然较差,并且移植后复发的风险较高 [14] 。

3.2. FLT3基因突变的靶向治疗药物

3.2.1. 索拉非尼

Zhang等研究发现,3名FLT3野生型(FLT3-WT)、6名FLT3-ITD突变的AML患者在使用索拉非尼(Sorafenib)后其复发率获得了减少,但是无法治疗FLT3-D835基因型的病人,即使是有FLT3-ITD基因型的病人,也不能得到有效的治疗 [15] 。但是Ravandietal研究发现,通过索拉非尼、阿糖胞苷与伊达比星(TNF-α)联用的方法,可使83%的FLT3-WT及95%的FLT3突变(含D835及ITD)得AML患者获得完全缓解,这个研究提示了索拉非尼对D835基因突变的敏感性 [16] 。索拉非尼联合氯法拉宾、阿糖胞苷等化疗药物在小儿难治/难治性白血病中显示出较好的疗效,83.3%的患儿疗效满意,其中6例(FLT3-ITD+, FLT3-WT+, FLT3-WT)获得了完全缓解 [17] 。Rölligetal通过一项双盲二期临床研究,纳入了267名年龄小于60岁的初次发病AML病人,随机将他们分组,并且分别给予安慰剂或索拉非尼,3年后,两组的无事件生存期和无事件生存率分别为9个月、22% (安慰剂组)和21个月、40% (索拉非尼组),表明索拉非尼可以对治疗60岁以下的AML患者有效,但是也会相应的增加药物毒性 [18] 。

ServeHetal.通过一项随机对照试验,纳入了201例接受标准阿糖胞苷和柔红霉素诱导治疗的患者,在化疗周期之间接受索拉非尼或安慰剂治疗,结果表明,两组的完全缓解率为安慰剂77%,索拉非尼40%、CR不完全恢复率安慰剂0%,索拉非尼20%、部分缓解率两组均为0%、难治性疾病率为安慰剂23%,索拉非尼20%,这表明索拉非尼联合化疗方案不能推荐用于适合联合化疗的老年AML患者,其可能的原因在于索拉非尼的抗白血病活性会被其增加的毒性抵消 [19] 。索拉非尼联合其他药物治疗的研究尚需要更多的Ⅲ期试验来进一步确认是否有益处。

3.2.2. 吉列替尼

吉列替尼(Glutatinib)是一种新发现的高效、高选择性的口服FLT3小分子抑制剂。FLT3基因突变分为2种,分别是FLT3-ITD和FLT3-TKD,它们均可引起FLT3发生不依赖于配体的磷酸化,并通过活化RAS/PI3K/AKT/丝–苏氨酸激酶等途径,引起AML的恶性表型 [15] 。吉列替尼是一种新型的抗AML药物,其作用机制与其对FLT3下游ERK、STAT5、AKT等信号分子的调控有关。奎扎替尼与吉列替尼联合应用,总有效率可达到50%~60% [20] 。吉列替尼因其疗效好、毒副作用小,被NCCN纳入了2019年度NCCN指南,成为难治性AML的新靶点 [21] 。

相关研究发现,吉列替尼对FLT3-ITD和FLT3-D835基因突变具有良好的抑制活性,对FLT3-F691基因突变的抑制活性,对c-KIT的抑制活性也强 [22] 。在Perl等的包含252例复发/难治性AML患者的I~II期研究中,吉列替尼对FLT3-ITD突变、FLT3-WT的耐药率为37%,对已有FLT3抑制剂的D835突变的耐药率为54%,提示吉列替尼有可能逆转AML对FLT3抑制剂抗性 [23] 。

3.2.3. 米跺妥林

米哚妥林为多种酪氨酸激酶受体的抑制剂,可抑制与白血病有关的III型酪氨酸激酶受体,如血小板源生长因子受体,FLT3,干性因子受体及激酶区受体;还可作为血管新生的关键调控分子,可抑制VEGFR的表达;另外,它还可下调K-ras、Kit等癌基因的表达,阻断突变及野生型FLT3受体的信号传导,启动细胞周期阻滞及引起表达FLT3-MT受体的白血病细胞凋亡 [24] 。多中心RATIFY临床试验显示,米哚妥林和常规化疗能明显改善成年AML的生存期(74.7/25.6/74.7/25.6/P = 0.009) [25] 。一项I期临床研究,以米哚妥林(25 mg/50mg,每日两次口服)与全反式维甲酸(ATRA)为基础,结合CLAG (克拉屈滨,阿糖胞苷,粒细胞集落刺激因子)来靶向治疗复发/难治AML的多种途径,结果表明,25 mg剂量的米哚妥林达到了治疗水平,而米哚妥林和全反式维甲酸之间没有显著的相互作用 [26] 。Cooper BW以17名高龄/或复发性AML病人为受试者,通过米哚妥林(25 mg,50 mg,每天2次,75 mg,每天2次)与75 mg/m2的阿扎胞苷(75 mg/m2)进行I期临床试验,研究表明,米哚妥林和阿扎胞苷联合应用具有较高的疗效和安全性 [27] 。

3.2.4. 奎扎替尼

奎扎替尼(quizartinib, AC220)为第二代FLT3抑制剂,具有良好的口服活性,目前已在日本获批用于治疗复发难治的AML,但尚未经FDA获批,有研究表明,其在体外和体内都对FLT3具有强效和高效的抑制活性 [28] 。

在一项多中心、随机对照的Ⅲ期研究中(QuANTUM-R),367名患者被随机分配至奎扎替尼组和化疗组(LoDAC:低剂量阿糖胞苷;MEC;FLAG-IDA),结果显示,奎扎替尼单独应用于FLT3-ITD基因突变的R/RAML患者的中位生存率为6.2个月,相对于传统的补救疗法,患者的生存率仅为4.7个月 [29] 。一项I期研究中,76例复发/难治型AML病人每天口服奎扎替尼,结果表明,奎扎替尼对53%的FLT3-ITD突变的病人和14%的FLT3-WT突变的病人均有疗效 [30] 。Tallman等在一项随机开放的II期临床试验中,对76例FLT3-ITD复发/难治性AML患者,分别给予30 mg和60 mg的奎扎替尼,结果表明各组均有有患者获得完全缓解,而且60 mg组有更多的患者在没有剂量增加的情况下获得完全缓解 [31] 。Cortesetal在对333名复发/难治的AML病人进行的第二阶段临床试验中也得到相似的结论 [32] 。Bowen等对55例新确诊的AML老年患者(中位年龄69岁)给予奎扎替尼联合化疗,42例中33例达到完全缓解,进一步证实了奎扎替尼联合化疗的有效性和安全性 [33] 。上述研究表明,奎扎替尼针对AML患者来说是一种安全、有效的化疗药物。

4. 总结与展望

对于大部分AML病人,目前的治疗方法仍是传统的“7 + 3”的化疗方案,并以阿糖胞苷和蒽环为基础,但是传统化疗存活率并不高,预后也较差,临床上只有20%~30%的病人能在化疗中存活,而且复发率较高,即使是经过骨髓造血干细胞移植,也是有一定的复发可能。因此,发现影响AML化疗敏感性的基因并阐明其分子机理,为临床提供精确的治疗方案,避免药物抵抗,对于改善AML的治疗效果和延长患者的生存率至关重要。另外。随着技术的进步,个体化治疗也成为了一种趋势。针对FLT3的药物已经被证明对FLT3-ITD突变的AML患者有很好的疗效,但是随着时间的推移,病人对FLT3抑制剂的耐药性会越来越强,从而导致疾病的快速复发,因此,针对不同的FLT3突变进行个体化治疗,将有助于进一步提高治疗效果。总的来说,FLT3-ITD突变的AML治疗前景变得越来越明朗,随着针对FLT3的药物的不断发展、联合治疗的进一步探索以及个体化治疗的发展,我们有理由相信,未来的AML治疗将会更加有效、安全和个体化。

参考文献

[1] Saleh, K., Khalifeh-Saleh, N. and Kourie, H.R. (2020) Acute Myeloid Leukemia Transformed to a Targetable Disease. Future Oncology (London, England), 16, 961-972.
https://doi.org/10.2217/fon-2019-0670
[2] DeSantis, C.E., Lin, C.C., Mariotto, A.B., Siegel, R.L., Stein, K.D., Kramer, J.L., Alteri, R., Robbins, A.S. and Jemal, A. (2014) Cancer Treatment and Survivorship Statistics, 2014. CA: A Cancer Journal for Clinicians, 64, 252-271.
https://doi.org/10.3322/caac.21235
[3] Shallis, R.M., Wang, R., Davidoff, A., Ma, X. and Zeidan, A.M. (2019) Epidemiology of Acute Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Reviews, 36, 70-87.
https://doi.org/10.1016/j.blre.2019.04.005
[4] Daver, N., Schlenk, R.F., Russell, N.H. and Levis, M.J. (2019) Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia, 33, 299-312.
https://doi.org/10.1038/s41375-018-0357-9
[5] Megías-Vericat, J.E., Ballesta-López, O., Barragán, E., Mar-tínez-Cuadrón, D. and Montesinos, P. (2020) Tyrosine Kinase Inhibitors for Acute Myeloid Leukemia: A Step toward Disease Control? Blood Reviews, 44, Article ID: 100675.
https://doi.org/10.1016/j.blre.2020.100675
[6] McLean, C.M., Karemaker, I.D. and van Leeuwen, F. (2014) The Emerging Roles of DOT1L in Leukemia and Normal Development. Leukemia, 28, 2131-2138.
https://doi.org/10.1038/leu.2014.169
[7] Stein, E.M., Garcia-Manero, G., Rizzieri, D.A., Tibes, R., Berdeja, J.G., Savona, M.R., Jongen-Lavrenic, M., Altman, J.K., Thomson, B., Blakemore, S.J., Daigle, S.R., Waters, N.J., Suttle, A.B., Clawson, A., Pollock, R., Krivtsov, A., Armstrong, S.A., DiMartino,J., Hedrick, E., Löwenberg, B. and Tallman, M.S. (2018) The DOT1L Inhibitor Pinometostat Reduces H3K79 Methylation and Has Modest Clinical Activity in Adult Acute Leukemia. Blood, 131, 2661-2669.
https://doi.org/10.1182/blood-2017-12-818948
[8] Assi, R., Kantarjian, H., Ravandi, F. and Daver, N. (2018) Immune Therapies in Acute Myeloid Leukemia: A Focus on Monoclonal Antibod-ies and Immune Checkpoint Inhibitors. Current Opinion in Hematology, 25, 136-145.
https://doi.org/10.1097/MOH.0000000000000401
[9] Clark, M.C. and Stein, A. (2020) CD33 Directed Bispecific Antibodies in Acute Myeloid Leukemia. Best Practice & Research. Clinical Haematology, 33, Article ID: 101224.
https://doi.org/10.1016/j.beha.2020.101224
[10] Sikic, B.I., Lakhani, N., Patnaik, A., Shah, S.A., Chandana, S.R., Rasco, D., Colevas, A.D., O’Rourke, T., Narayanan, S., Papadopoulos, K., Fisher, G.A., Villalobos, V., Prohaska, S.S., Howard, M., Beeram, M., Chao, M.P., Agoram, B., Chen, J.Y., Huang, J., Axt, M. and Padda, S.K. (2019) First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients with Advanced Cancers. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37, 946-953.
https://doi.org/10.1200/JCO.18.02018
[11] Riether, C., Pabst, T., Höpner, S., Bacher, U., Hinterbrandner, M., Banz, Y., Müller, R., Manz, M.G., Gharib, W.H., Francisco, D., Bruggmann, R., van Rompaey, L., Moshir, M., De-lahaye, T., Gandini, D., Erzeel, E., Hultberg, A., Fung, S., de Haard, H., Leupin, N. and Ochsenbein, A.F. (2020) Tar-geting CD70 with Cusatuzumab Eliminates Acute Myeloid Leukemia Stem Cells in Patients Treated with Hypomethylat-ing Agents. Nature Medicine, 26, 1459-1467.
https://doi.org/10.1038/s41591-020-0910-8
[12] Schiller, G.J. (2014) Evolving Treatment Strategies in Patients with High-Risk Acute Myeloid Leukemia. Leukemia & Lymphoma, 55, 2438-2448.
https://doi.org/10.3109/10428194.2014.881479
[13] Daver, N., Alotaibi, A.S., Bücklein, V. and Subklewe, M. (2021) T-Cell-Based Immunotherapy of Acute Myeloid Leukemia: Current Concepts and Future Developments. Leuke-mia, 35, 1843-1863.
https://doi.org/10.1038/s41375-021-01253-x
[14] Maziarz, R.T., Scott, B.L., Mohan, S.R., et al. (2016) A Phase II, Randomized Trial of Standard of Care with or without Midostaurin to Prevent Relapse Following Allogeneic Stem Cell Transplantation in Patients with FLT3-ITD Mutated Acute Myeloid Leukemia. Journal of Clinical Oncology, 33.
https://doi.org/10.1200/jco.2015.33.15_suppl.tps7094
[15] Ma, J., Zhao, S., Qiao, X., Knight, T., Edwards, H., Polin, L., Kushner, J., Dzinic, S.H., White, K., Wang, G., Zhao, L., Lin, H., Wang, Y., Taub, J.W. and Ge, Y. (2019) In-hibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25, 6815-6826.
https://doi.org/10.1158/1078-0432.CCR-19-0832
[16] Ravandi, F., Arana Yi, C., Cortes, J.E., Levis, M., Faderl, S., Garcia-Manero, G., Jabbour, E., Konopleva, M., O’Brien, S., Estrov, Z., Borthakur, G., Thomas, D., Pierce, S., Brandt, M., Pratz, K., Luthra, R., Andreeff, M. and Kantarjian, H. (2014) Final Report of Phase II Study of Sorafenib, Cytarabine and Idarubicin for Initial Therapy in Younger Patients with Acute Myeloid Leukemia. Leukemia, 28, 1543-1545.
https://doi.org/10.1038/leu.2014.54
[17] Inaba, H., Rubnitz, J.E., Coustan-Smith, E., Li, L., Furmanski, B.D., Mascara, G.P., Heym, K.M., Christensen, R., Onciu, M., Shurtleff, S.A., Pounds, S.B., Pui, C.H., Ribeiro, R.C., Cam-pana, D. and Baker, S.D. (2011) Phase I Pharmacokinetic and Pharmacodynamic Study of the Multikinase Inhibitor So-rafenib in Combination with Clofarabine and Cytarabine in Pediatric Relapsed/Refractory Leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29, 3293-3300.
https://doi.org/10.1200/JCO.2011.34.7427
[18] Röllig, C., Serve, H., Hüttmann, A., Noppeney, R., Müller-Tidow, C., Krug, U., Baldus, C.D., Brandts, C.H., Kunzmann, V., Einsele, H., Krämer, A., Schäfer-Eckart, K., Neubauer, A., Burchert, A., Giagounidis, A., Krause, S.W., Mackensen, A., Aulitzky, W., Herbst, R., Hänel, M. and Study Alliance Leukaemia (2015) Addition of Sorafenib Versus Placebo to Standard Therapy in Patients Aged 60 Years or Younger with Newly Diagnosed Acute Myeloid Leukaemia (SORAML): A Multicentre, Phase 2, Randomised Controlled Trial. The Lancet. Oncology, 16, 1691-1699.
https://doi.org/10.1016/S1470-2045(15)00362-9
[19] Serve, H., Krug, U., Wagner, R., Sauerland, M.C., Heinecke, A., Brunnberg, U., Schaich, M., Ottmann, O., Duyster, J., Wandt, H., Fischer, T., Giagounidis, A., Neubauer, A., Reichle, A., Aulitzky, W., Noppeney, R., Blau, I., Kunzmann, V., Stuhlmann, R., Krämer, A. and Berdel, W.E. (2013) Sorafenib in Combination with Intensive Chemotherapy in Elderly Patients with Acute Myeloid Leukemia: Results from a Randomized, Placebo-Controlled Trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 3110-3118.
https://doi.org/10.1200/JCO.2012.46.4990
[20] Garcia-Manero, G., Gore, S.D., Cogle, C., Ward, R., Shi, T., Macbeth, K.J., Laille, E., Giordano, H., Sakoian, S., Jabbour, E., Kantarjian, H. and Skikne, B. (2011) Phase I Study of Oral Azacitidine in Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, and Acute Myeloid Leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29, 2521-2527.
https://doi.org/10.1200/JCO.2010.34.4226
[21] Wei, A.H., Döhner, H., Pocock, C., Montesinos, P., Afanasyev, B., Dombret, H., Ravandi, F., Sayar, H., Jang, J.H., Porkka, K., Selleslag, D., Sandhu, I., Turgut, M., Giai, V., Ofran, Y., Kizil Çakar, M., Botelho de Sousa, A., Rybka, J., Frairia, C., Borin, L. and QUAZAR AML-001 Trial Investigators (2020) Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. The New England Jour-nal of Medicine, 383, 2526-2537.
https://doi.org/10.1056/NEJMoa2004444
[22] Baragaño Raneros, A., Martín-Palanco, V., Fernandez, A.F., Ro-driguez, R.M., Fraga, M.F., Lopez-Larrea, C. and Suarez-Alvarez, B. (2015) Methylation of NKG2D Ligands Contrib-utes to Immune System Evasion in Acute Myeloid Leukemia. Genes and Immunity, 16, 71-82.
https://doi.org/10.1038/gene.2014.58
[23] Perl, A.E., Altman, J.K., Cortes, J., Smith, C., Litzow, M., Baer, M.R., Claxton, D., Erba, H.P., Gill, S., Goldberg, S., Jurcic, J.G., Larson, R.A., Liu, C., Ritchie, E., Schiller, G., Spira, A.I., Strickland, S.A., Tibes, R., Ustun, C., Wang, E.S. and Levis, M. (2017) Selective Inhibition of FLT3 by Gilteritinib in Relapsed or Refractory Acute Myeloid Leukaemia: A Multicentre, First-in-Human, Open-Label, Phase 1-2 Study. The Lancet. Oncology, 18, 1061-1075.
https://doi.org/10.1016/S1470-2045(17)30416-3
[24] Park, I.K., Mundy-Bosse, B., Whitman, S.P., Zhang, X., Warner, S.L., Bearss, D.J., Blum, W., Marcucci, G. and Caligiuri, M.A. (2015) Receptor Tyrosine Kinase Axl Is Re-quired for Resistance of Leukemic Cells to FLT3-Targeted Therapy in Acute Myeloid Leukemia. Leukemia, 29, 2382-2389.
https://doi.org/10.1038/leu.2015.147
[25] Stone, R.M., Mandrekar, S.J., Sanford, B.L., Laumann, K., Geyer, S., Bloomfield, C.D., Thiede, C., Prior, T.W., Döhner, K., Marcucci, G., Lo-Coco, F., Klisovic, R.B., Wei, A., Sierra, J., Sanz, M.A., Brandwein, J.M., de Witte, T., Niederwieser, D., Appelbaum, F.R., Medeiros, B.C. and Döhner, H. (2017) Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. The New England Journal of Medicine, 377, 454-464.
https://doi.org/10.1056/NEJMoa1614359
[26] Ramsingh, G., Westervelt, P., McBride, A., Stockerl-Goldstein, K., Vij, R., Fiala, M., Uy, G., Cashen, A., Dipersio, J.F. and Abboud, C.N. (2014) Phase I Study of Cladribine, Cytarabine, Granulocyte Colony Stimulating Factor (CLAG Regimen) and Midostaurin and All-Trans Retinoic Acid in Re-lapsed/Refractory AML. International Journal of Hematology, 99, 272-278.
https://doi.org/10.1007/s12185-014-1503-4
[27] Cooper, B.W., Kindwall-Keller, T.L., Craig, M.D., Creger, R.J., Hamadani, M., Tse, W.W. and Lazarus, H.M. (2015) A Phase I Study of Midostaurin and Azacitidine in Relapsed and Elderly AML Patients. Clinical Lymphoma, Myeloma & Leukemia, 15, 428-432.e2.
https://doi.org/10.1016/j.clml.2015.02.017
[28] Zarrinkar, P.P., Gunawardane, R.N., Cramer, M.D., Gardner, M.F., Brigham, D., Belli, B., Karaman, M.W., Pratz, K.W., Pallares, G., Chao, Q., Sprankle, K.G., Patel, H.K., Levis, M., Armstrong, R.C., James, J. and Bhagwat, S.S. (2009) AC220 Is a Uniquely Potent and Selective Inhibitor of FLT3 for the Treatment of Acute Myeloid Leukemia (AML). Blood, 114, 2984-2992.
https://doi.org/10.1182/blood-2009-05-222034
[29] Cortes, J.E., Khaled, S., Martinelli, G., Perl, A.E., Ganguly, S., Russell, N., Krämer, A.,Dombret, H., Hogge, D., Jonas, B.A., Leung, A.Y., Mehta, P., Montesinos, P., Radsak, M., Si-ca, S., Arunachalam, M., Holmes, M., Kobayashi, K., Namuyinga, R., Ge, N. and Levis, M.J. (2019) Quizartinib versus Salvage Chemotherapy in Relapsed or Refractory FLT3-ITD Acute Myeloid Leukaemia (QuANTUM-R): A Multicentre, Randomised, Controlled, Open-Label, Phase 3 Trial. The Lancet. Oncology, 20, 984-997.
https://doi.org/10.1016/S1470-2045(19)30150-0
[30] Cortes, J.E., Kantarjian, H., Foran, J.M., Ghirdaladze, D., Zodelava, M., Borthakur, G., Gammon, G., Trone, D., Armstrong, R.C., James, J. and Levis, M. (2013) Phase I Study of Quizartinib Administered Daily to Patients with Relapsed or Refractory Acute Myeloid Leukemia Irrespective of FMS-Like Tyrosine Kinase 3-Internal Tandem Duplication Status. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31, 3681-3687.
https://doi.org/10.1200/JCO.2013.48.8783
[31] Cortes, J.E., Tallman, M.S., Schiller, G., et al. (2013) Results of a Phase 2 Randomized, Open-Label, Study of Lower Doses of Quizartinib (AC220; ASP2689) in Subjects with FLT3-ITD Positive Relapsed or Refractory Acute Myeloid Leukemia (AML). Blood, 122, 494.
https://doi.org/10.1182/blood.V122.21.494.494
[32] Cortes, J., Perl, A.E., Döhner, H., Kantarjian, H., Martinelli, G., Kovacsovics, T., Rousselot, P., Steffen, B., Dombret, H., Estey, E., Strickland, S., Altman, J.K., Baldus, C.D., Burnett, A., Krämer, A., Russell, N., Shah, N.P., Smith, C.C., Wang, E.S., Ifrah, N. and Levis, M. (2018) Quizartinib, an FLT3 Inhibitor, as Monotherapy in Patients with Relapsed or Refractory Acute Myeloid Leukae-mia: An Open-Label, Multicentre, Single-Arm, Phase 2 Trial. The Lancet. Oncology, 19, 889-903.
https://doi.org/10.1016/S1470-2045(18)30240-7
[33] Burnett, A.K., Bowen, D., Russell, N., Knapper, S., Milligan, D., Hunter, A.E. and Hills, R.K. (2013) AC220 (Quizartinib) Can Be Safely Combined with Conventional Chemotherapy in Older Patients with Newly Diagnosed Acute Myeloid Leukaemia: Experience from the AML18 Pilot Trial. Blood, 122, 622.
https://doi.org/10.1182/blood.V122.21.622.622