[1]
|
Novoselov, K.S., Geim, A.K., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666- 669. https://doi.org/10.1126/science.1102896
|
[2]
|
Xu, M., Liang, T., Shi, M. and Chen, H. (2013) Gra-phene-Like Two-Dimensional Materials. Chemical Reviews, 113, 3766- 3798. https://doi.org/10.1021/cr300263a
|
[3]
|
Vogt, P., et al. (2012) Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Physical Review Letters, 108, Article ID: 155501. https://doi.org/10.1103/PhysRevLett.108.155501
|
[4]
|
Tan, C. and Zhang, H. (2015) Two-Dimensional Tran-sition Metal Dichalcogenide Nanosheet-Based Composites. Chemical Society Reviews, 44, 2713-2731. https://doi.org/10.1039/C4CS00182F
|
[5]
|
Chhowalla, M., et al. (2013) The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chemistry, 5, 263-275. https://doi.org/10.1038/nchem.1589
|
[6]
|
Balendhran, S., Walia, S., Nili, H., Sriram, S. and Bhaskaran, M. (2015) Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small, 11, 640-652. https://doi.org/10.1002/smll.201402041
|
[7]
|
Tan, C., et al. (2017) Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 117, 6225- 6331. https://doi.org/10.1021/acs.chemrev.6b00558
|
[8]
|
Lin, Y., Williams, T.V. and Connell, J.W. (2010) Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets. The Journal of Physical Chemistry Letters, 1, 277-283. https://doi.org/10.1021/jz9002108
|
[9]
|
Gupta, S.K., He, H., Banyai, D., et al. (2014) Effect of Si Doping on the Electronic Properties of BN Monolayer. Nanoscale, 6, 5526-5531. https://doi.org/10.1039/C4NR00159A
|
[10]
|
Yamashita, H., Fukui, K., Misawa, S. and Yoshida, S. (1979) Op-tical Properties of AlN Epitaxial Thin Films in the Vacuum Ultraviolet Region. Journal of Applied Physics, 50, 896-898. https://doi.org/10.1063/1.326007
|
[11]
|
Brunner, D., Angerer, H., Bustarret, E., et al. (1997) Optical Constants of Epitaxial AlGaN Films and Their Temperature Dependence. Journal of Applied Physics, 82, 5090-5096. https://doi.org/10.1063/1.366309
|
[12]
|
Gallinat, C.S., Koblmüller, G., Brown, J.S., et al. (2006) In-Polar InN Grown by Plasma-Assisted Molecular Beam Epitaxy. Applied Physics Letters, 89, Article ID: 032109. https://doi.org/10.1063/1.2234274
|
[13]
|
Ho, J.C., Specht, P., Yang, Q., et al. (2005) Effects of Stoichiometry on Electrical, Optical, and Structural Properties of Indium Nitride. Journal of Applied Physics, 98, Article ID: 093712. https://doi.org/10.1063/1.2130514
|
[14]
|
Peng, Z., Chen, X., Fan, Y., Srolovitz, D.J. and Lei, D. (2020) Strain Engineering of 2D Semiconductors and Graphene: from Strain Fields to Band-Structure Tuning and Photonic Ap-plications. Light: Science & Applications, 9, Article No. 190. https://doi.org/10.1038/s41377-020-00421-5
|
[15]
|
Drummond, N.D., Zólyomi, V. and Fal’Ko, V.I. (2012) Electrically Tunable Band Gap in Silicene. Physical Review B, 85, Article ID: 075423. https://doi.org/10.1103/PhysRevB.85.075423
|
[16]
|
Fu, L., Wang, X. and Mi, W. (2021) Tunable Electronic Structure and Magnetic Anisotropy of Two Dimensional Mn2CFCl/MoSSe van der Waals Heterostructures by Electric Field and Biaxial Strain. Applied Surface Science, 566, Article ID: 150683. https://doi.org/10.1016/j.apsusc.2021.150683
|
[17]
|
Wang, X., Meng, L., Li, B. and Gong, Y. (2021) Heteroa-toms/Molecules to Tune the Properties of 2D Materials. Materials Today, 47, 108-130. https://doi.org/10.1016/j.mattod.2020.12.019
|
[18]
|
Novoselov, K.S., Mishchenko, A., Carvalho, A. and Castro Neto, A.H. (2016) 2D Materials and van der Waals Heterostructures. Science, 353, Article ID: Aac9439. https://doi.org/10.1126/science.aac9439
|
[19]
|
Behera, H. and Mukhopadhyay, G. (2019) Effect of Strain on the Structural and Electronic Properties of Graphene- Like GaN: A DFT Study. International Journal of Modern Physics B, 33, Article ID: 1950281.
https://doi.org/10.1142/S0217979219502813
|
[20]
|
Wang, J., Khazaei, M., Arai, M., et al. (2017) Semimetallic Two-Dimensional TiB12: Improved Stability and Electronic Properties Tunable by Biaxial Strain. Chemistry of Ma-terials, 29, 5922-5930.
https://doi.org/10.1021/acs.chemmater.7b01433
|
[21]
|
郝帅帅. 应力对宽带隙二维半导体材料性质的调控[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2018.
|
[22]
|
杨聪霞. 应力和掺杂对单层WSe2电子结构和磁性的影响[D]: [硕士学位论文]. 新乡: 河南师范大学, 2018.
|
[23]
|
陈卉, 帮少, 周少雄, 李京波. 应力调控TiS3单层材料电子性质的第一性原理研究[J]. 功能材料, 2018, 49(10): 10065-10070.
|
[24]
|
Choi, S.-M., Jhi, S.-H. and Son, Y.-W. (2010) Controlling Energy Gap of Bilayer Graphene by Strain. Nano Letters, 10, 3486-3489. https://doi.org/10.1021/nl101617x
|
[25]
|
颜平兰, 李金. 平面应变对二维单层氮化镓电子性质的调控作用[J]. 湘潭大学自然科学学报, 2017, 39(3): 14-17.
|
[26]
|
Li, J., Gui, G. and Zhong, J.X. (2008) Tunable Bandgap Struc-tures of Two-Dimensional Boron Nitride. Journal of Applied Physics, 104, Article ID: 094311. https://doi.org/10.1063/1.3006138
|
[27]
|
Desai, S.B., Seol, G., Kang, J.S., et al. (2014) Strain Induced Indirect to Direct Bandgap Transition in Multilayer WSe2. Nano Letters, 14, 4592-4597. https://doi.org/10.1021/nl501638a
|
[28]
|
He, K., Poole, C., Mak, K.F. and Shan, J. (2013) Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2. Nano Letters, 13, 2931-2936. https://doi.org/10.1021/nl4013166
|
[29]
|
Wang, Y.L., Cong, C.X., Yang, W.H., et al. (2015) Strain-Induced Direct-Indirect Bandgap Transition and Phonon Modulation in Monolayer WS2. Nano Research, 8, 2562-2572. https://doi.org/10.1007/s12274-015-0762-6
|
[30]
|
Niu, T.C., Meng, Q.L., Zhou, D.C., et al. (2020) Large-Scale Synthesis of Strain-Tunable Semiconducting Antimonene on Copper Oxide. Advanced Materials, 32, Article ID: 1906873. https://doi.org/10.1002/adma.201906873
|
[31]
|
Li, Y., Yang, S.X. and Li, J.B. (2014) Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field. The Journal of Physical Chemistry C, 118, 23970-23976. https://doi.org/10.1021/jp506881v
|
[32]
|
Huang, S.Y., Zhang, G.W., Fan, F.R, et al. (2019) Strain-Tunable van der Waals Interactions in Few-Layer Black Phosphorus. Nature Com-munications, 10, Article No. 2447. https://doi.org/10.1038/s41467-019-10483-8
|
[33]
|
Johari, P. and Shenoy, V.B. (2012) Tuning the Electronic Properties of Semiconducting Transition Metal Dichalcogenides by Applying Mechanical Strains. ACS Nano, 6, 5449-5456. https://doi.org/10.1021/nn301320r
|
[34]
|
李莎莎. 锗烯电子结构的外场调控理论研究[D]: [硕士学位论文]. 长沙: 湖南师范大学, 2019.
|
[35]
|
Xia, C., Zhang, Q., Xiao, W., et al. (2018) Quantum Size and Electric Field Modulations on Electronic Structures of SnS2/BN Hetero-Multilayers. Journal of Physics D: Applied Physics, 51, Article ID: 215303.
https://doi.org/10.1088/1361-6463/aabd0c
|
[36]
|
潘龙飞. 半导体二维SnS材料在电场下的性质研究[D]: [硕士学位论文]. 北京: 北京理工大学, 2016.
|
[37]
|
王昌英, 路宇畅, 任翠兰, 等. 电场、应力和电荷态对Ti2CO2电子性质调控的理论研究[J]. 无机材料学报, 2020, 35(1): 73-80.
|
[38]
|
谢剑锋. 六角氮化硼片带隙调制的第一性原理研究[D]: [硕士学位论文]. 湘潭: 湘潭大学.
|
[39]
|
Liu, X. and Li, Z. (2015) Electric Field and Strain Effect on Graphene-MoS2 Hybrid Structure: Ab Initio Calculations. The Journal of Physical Chemistry Letters, 6, 3269-3275. https://doi.org/10.1021/acs.jpclett.5b01233
|
[40]
|
刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算[J]. 物理学报, 2018, 67(7): 192-198.
|
[41]
|
Uwanno, T., Taniguchi, T., Watanabe, K. and Nagashio, K. (2018) Electrically Inert h-BN/Bilayer Graphene Interface in All-Two-Dimensional Heterostructure Field Effect Transistors. ACS Applied Materials & Interfaces, 10, 28780- 28788. https://doi.org/10.1021/acsami.8b08959
|
[42]
|
李佳斌. GaN掺杂的电子结构与光学特性的第一性原理研究[D]: [博士学位论文]. 西安: 西安电子科技大学, 2019.
|
[43]
|
王清霞. 掺杂原子对单层SnSe材料电学性质和磁学性质影响的第一性原理研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
|
[44]
|
孙志远. 碱金属掺杂单层MoSSe和MoSi2N4的第一性原理研究[D]: [硕士学位论文]. 荆州: 长江大学, 2022.
|
[45]
|
Denis, P.A. (2010) Band Gap Opening of Monolayer and Bilayer Graphene Doped with Aluminium, Silicon, Phosphorus, and Sulfur. Chemical Physics Letters, 492, 251-257. https://doi.org/10.1016/j.cplett.2010.04.038
|
[46]
|
李玲霞. 二维材料异质结电子特性调控的模拟研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2022.
|
[47]
|
庄乾勇. 二维SnSe/GeTe异质结光电性质的第一性原理研究[D]: [硕士学位论文]. 湘潭: 湘潭大学, 2021.
|