关于一类特殊 3 × 3 块鞍点系统解的结构向后误差分析
Structured Backward Error Analysis ona Special Class of Block Three-by-ThreeSaddle Point Systems
DOI: 10.12677/PM.2023.135155, PDF, HTML, 下载: 165  浏览: 245  科研立项经费支持
作者: 邢嘉璐:西北师范大学,数学与统计学院,甘肃 兰州
关键词: 3 × 3 块鞍点问题向后误差结构向后误差Block 3 × 3 Saddle Point Problem Backward Error Structured Backward Error
摘要: 近年来,一类特殊的 3 × 3 块鞍点系统被广泛应用于一些物理问题中。 为了便于测试实际数值算法的稳定性,本文对这种类型的 3 × 3 块鞍点系统进行了结构向后误差分析,并给出了结构向后误差的可计算的具体公式。 基于结构向后误差,我们进行了数值实验。 数值实验结果表明该表达式可用于检验实际算法的稳定性。
Abstract: In recent years, a special class of block three-by-three saddle point systems is widely applied to a number of physical problems. In order to evaluate the stability of actual numerical algorithms, this paper performs the structured backward error analysis for this type of block three-by-three saddle point system and presents an explicit and computable formula for the structured backward error. Based on the structured backward error, we perform numerical experiment. Numerical example shows that the expressions are useful for testing the stability of practical algorithms.
文章引用:邢嘉璐. 关于一类特殊 3 × 3 块鞍点系统解的结构向后误差分析[J]. 理论数学, 2023, 13(5): 1528-1547. https://doi.org/10.12677/PM.2023.135155

参考文献

[1] Bunch, J.R. (1987) The Weak and Strong Stability of Algorithms in Numerical Linear Algebra. Linear Algebra and Its Applications, 88-89, 49-66.
https://doi.org/10.1016/0024-3795(87)90102-9
[2] Higham, N.J. (2002) Accuracy and Stability of Numerical Algorithms. 2nd Edition, SIAM, Philadelphia.
https://doi.org/10.1137/1.9780898718027
[3] Rhebergen, S., Wells, G.N., Wathen, A.J. and Katz, R.F. (2015) Three-Field Block Preconditioners for Models of Coupled Magma/Mantle Dynamics. SIAM Journal on Scientific Computing, 37, A2270-A2294.
https://doi.org/10.1137/14099718X
[4] Castelletto, N., White, J.A. and Ferronato, M. (2016) Scalable Algorithms for Three-Field Mixed Finite Element Coupled Poromechanics. Journal of Computational Physics, 327, 894- 918.
https://doi.org/10.1016/j.jcp.2016.09.063
[5] Frigo, M., Castelletto, N., Ferronato, M. and White, J.A. (2021) Effcient Solvers for Hybridized Three-Field Mixed Finite Element Coupled Poromechanics. Computers and Mathematics with Applications, 91, 36-52.
https://doi.org/10.1016/j.camwa.2020.07.010
[6] Chen, X.S., Li, W., Chen, X.J. and Liu, J. (2012) Structured Backward Errors for Generalized Saddle Point Systems. Linear Algebra and Its Applications, 436, 3109-3119.
https://doi.org/10.1016/j.laa.2011.10.012
[7] Meng, L.S., He, Y.W. and Miao, S.X. (2020) Structured Backward Errors for Two Kinds of Generalized Saddle Point Systems. Linear and Multilinear Algebra, 70, 1345-1355.
https://doi.org/10.1080/03081087.2020.1760193
[8] Sun, J.G. (1999) Structured Backward Errors for KKT Systems. Linear Algebra and Its Ap- plications, 288, 75-88.
https://doi.org/10.1016/S0024-3795(98)10184-2
[9] Xiang, H. and Wei, Y.M. (2007) On Normwise Structured Backward Errors for Saddle Point Systems. SIAM Journal on Matrix Analysis and Applications, 29, 838-849.
https://doi.org/10.1137/060663684
[10] Zheng, B. and Lv, P. (2020) Structured Backward Error Analysis for Generalized Saddle Point Problems. Advances in Computational Mathematics, 46, Article No. 34.
https://doi.org/10.1007/s10444-020-09787-x
[11] Sun, J.G. (1996) Optimal Backward Perturbation Bounds for Linear Systems and Linear Least Squares Problems. Tech. Rep., UMINF 96.15, Department of Computing Science, Umea University, Umea.
[12] Horn, R.A. and Johnson, C.R. (1991) Topics in Matrix Analysis. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511840371
[13] Sun, J.G. (2001) Matrix Perturbation Analysis. 2nd Edition, Science Press, Beijing.
[14] Boffi, D., Brezzi, F. and Fortin, M. (2013) Mixed Finite Element Methods and Applications. In: Springer Series in Computational Mathematics, Springer, New York.
https://doi.org/10.1007/978-3-642-36519-5
[15] Golub, G.H. and Van Loan, C.F. (2013) Matrix Computations. 4th Edition, The Johns Hopkins University Press, Baltimore.
[16] Lv, P. and Zheng, B. (2022) Structured Backward Error Analysis for a Class of Block Three-by-Three Saddle Point Problems. Numerical Algorithms, 90, 59-78.
https://doi.org/10.1007/s11075-021-01179-6