三维地核磁流体力学方程组在临界Fourier-Besov 空间中的整体适定性
Global Well-Posedness of theThree-DimensionalMagnetohydrodynamic Equations Arisingfrom the Earth's Core in CriticalFourier-Besov Spaces
DOI: 10.12677/PM.2023.139268, PDF, 下载: 140  浏览: 187  科研立项经费支持
作者: 赵丹丹, 孙晋易:西北师范大学,数学与统计学院,甘肃 兰州
关键词: 三维旋转磁流体力学方程组Fourier-Besov 空间适定性Three-Dimensional Magnetohydrodynamics Equations Global Well-Posedness Fourier-Besov Spaces
摘要: 三维地核磁流体力学方程组是描述地核中导电金属流体运动与地球磁场变化规律的基本方程组。 通过运用 Littlewood-Paley 分解,并通过建立相应算子半群的一致有界性估计,证明了三维旋转磁流体力学方程组柯西问题关于 Fourier-Besov 空间中小初值的整体适定性。
Abstract: The three-dimensional magnetohydrodynamics equations arising from the Earth's core are the basic equations describing the motion of the conducting metal fluids in the Earth's core and the changes of the Earth's magnetic field. With the help of the Littlewood-Paley decomposition and by establishing the uniformly bounded estimations of the corresponding operator semigroups on Fourier-Besov spaces, we prove the global well-posedness of Cauchy problem of this three-dimensional magnetohydrody-namics equations for small initial data in critical Fourier-Besov spaces.
文章引用:赵丹丹, 孙晋易. 三维地核磁流体力学方程组在临界Fourier-Besov 空间中的整体适定性[J]. 理论数学, 2023, 13(9): 2621-2632. https://doi.org/10.12677/PM.2023.139268

参考文献

[1] Larmor, J. (1919) How Could a Rotating Body Such as the Sun Become a Magnet. Report of the British Association for the Advancement of Science, 159, 412.
[2] Dormy, E., Jault, D. and Soward, A. (2002) A Super Rotating Shear Layer in Magnetohydrodynamic Spherical Couette Flow. Journal of Fluid Mechanics, 452, 263-291.
https://doi.org/10.1017/S0022112001006711
[3] Merrill, R.T., McElhinny, M.W. and McFadden, P.L. (1998) The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Volume 63 of International Geophysics Series. Academic Press, Cambridge, MA.
[4] Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem I. Archive for Rational Mechanics and Analysis, 16, 269-315.
https://doi.org/10.1007/BF00276188
[5] Kato, T. (1984) Strong Lp-Solutions of the Navier-Stokes Equation in Rm, with Applications to Weak Solutions. Mathematische Zeitschrift, 187, 471-480.
https://doi.org/10.1007/BF01174182
[6] Cannone, M. (1997) A Generalization of a Theorem by Kato on Navier-Stokes Equations. Revista Matematica Iberoamericana, 13, 515-541.
https://doi.org/10.4171/RMI/229
[7] Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in Mathematics, 157, 22-35.
https://doi.org/10.1006/aima.2000.1937
[8] Babin, A., Mahalov, A. and Nicolaenko, B. (1997) Regularity and Integrability of 3D Euler and Navier-Stokes Equations for Rotating Fluids. Asymptotic Analysis, 15, 103-150.
https://doi.org/10.3233/ASY-1997-15201
[9] Babin, A., Mahalov, A. and Nicolaenko, B. (1999) Global Regularity of the 3D Rotating Navier-Stokes Equations for Resonant Domains. Indiana University Mathematics Journal, 48, 1133-1176.
https://doi.org/10.1512/iumj.1999.48.1856
[10] Chemin, J.Y., Desjardins, B., Gallagher, I. and Grenier, E. (2006) Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford University Press, Oxford.
https://doi.org/10.1093/oso/9780198571339.001.0001
[11] Iwabuchi, T. and Takada, R. (2013) Global Solutions for the Navier-Stokes Equations in the Rotational Framework. Mathematische Annalen, 357, 727-741.
https://doi.org/10.1007/s00208-013-0923-4
[12] Sun, J., Yang, M. and Cui, S. (2017) Existence and Analyticity of Mild Solutions for the 3D Rotating Navier-Stokes Equations. Annali di Matematica Pura ed Applicata, 196, 1203-1229.
https://doi.org/10.1007/s10231-016-0613-4
[13] Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations in the Rotational Framework. Advances in Difference Equations, 19, 857-878.
https://doi.org/10.57262/ade/1404230126
[14] Konieczny, P. and Yoneda, T. (2011) On Dispersive Effect of the Coriolis Force for the Stationary Navier-Stokes Equations. Journal of Differential Equations, 250, 3859-3873.
https://doi.org/10.1016/j.jde.2011.01.003
[15] Iwabuchi, T. and Takada, R. (2014) Global Well-Posedness and Ill-Posedness for the Navier- Stokes Equations with the Coriolis Force in Function Spaces of Besov Type. Journal of Func- tional Analysis, 267, 1321-1337.
https://doi.org/10.1016/j.jfa.2014.05.022
[16] Sun, J. and Cui, S. (2019) Sharp Well-Posedness and Ill-Posedness of the Three-Dimensional Primitive Equations of Geophysics in Fourier-Besov Spaces. Nonlinear Analysis: Real World Applications, 48, 445-465.
https://doi.org/10.1016/j.nonrwa.2019.02.003
[17] Duvaut, G. and Lions, J.L. (1972) Inequations en thermoelasticite et magnetohydrodynamique. Archive for Rational Mechanics and Analysis, 46, 241-279.
https://doi.org/10.1007/BF00250512
[18] Sermange, M. and Temam, R. (1983) Some Mathematical Questions Related to the MHD Equations. Communications on Pure and Applied Mathematics, 36, 635-664.
https://doi.org/10.1002/cpa.3160360506
[19] Zhai, X., Li, Y. and Yan, W. (2015) Global Well-Posedness for the 3-D Incompressible MHD Equations in the Critical Besov Spaces. Communications on Pure and Applied Analysis, 14, 1865-1884.
https://doi.org/10.3934/cpaa.2015.14.1865