儿童急性坏死性脑病治疗研究进展
Research Progress on the Treatment of Acute Necrotizing Encephalopathy in Children
DOI: 10.12677/ACM.2023.13122754, PDF, HTML, XML, 下载: 105  浏览: 224 
作者: 邓明森, 肖 农*:重庆医科大学附属儿童医院康复科,重庆;国家儿童健康与疾病临床医学研究中心,重庆;儿童发育疾病研究教育部重点实验室,重庆;儿科学重庆市重点实验室,重庆
关键词: 急性坏死性脑病儿童发病机制诊断治疗Acute Necrotizing Encephalopathy Children Pathogenesis Diagnosis Treatment
摘要: 儿童急性坏死性脑病(acute necrotizing encephalopathy of children, ANEC)多见于病毒感染诱发,临床以意识水平迅速发生障碍、惊厥发作为主要表现,目前发病机制暂不清楚,目前普遍认为与细胞因子风暴有关,基因易感性也在发病中起到一定作用。急性坏死性脑病早期缺乏特异性临床表现,严重威胁儿童生命,目前暂无特殊治疗方式,除对症支持治疗外,控制细胞因子风暴同样重要,主要包括丙种球蛋白、糖皮质激素、IL-6阻滞剂(托珠单抗)等被用于治疗该病,早期及时控制细胞因子风暴有助于改善患儿预后,但仍遗留较高的致残率,需进一步研究对于急性坏死性脑病的治疗方式,从而提高生存率和降低致残率。
Abstract: Acute necrotizing encephalopathy in children (ANEC) is often induced by viral infection. The main clinical manifestations are rapid disturbance of consciousness and convulsion. At present, the pathogenesis is not clear. It is generally believed that it is related to cytokine storm, and genetic susceptibility also plays a certain role in the pathogenesis. Acute necrotizing encephalopathy is the lack of specific clinical manifestations in the early stage, which seriously threatens children’s life. At present, there is no special treatment. In addition to symptomatic support treatment, it is also im-portant to control cytokine storm, mainly including gamma globulin, glucocorticoid, IL-6 blocker (trozumab). Early and timely control of cytokine storm is helpful to improve the prognosis of chil-dren, but it still leaves a high disability rate. It is necessary to further study the treatment of acute necrotizing encephalopathy so as to improve the survival rate and reduce the rate of disability.
文章引用:邓明森, 肖农. 儿童急性坏死性脑病治疗研究进展[J]. 临床医学进展, 2023, 13(12): 19559-19566. https://doi.org/10.12677/ACM.2023.13122754

1. 引言

儿童急性坏死性脑病(acute necrotizing encephalopathy of children, ANEC)是一种全球分布且罕见的疾病,最初由1995年Mizuguchi等人最初发现,临床以发热、抽搐、意识障碍及多脏器功能衰竭为主要表现,以及影像学表现为对称性多灶性脑损害,主要累及双侧丘脑、脑干背盖、大脑白质、小脑等,幸存者多遗留神经系统障碍,其病死率大约30%,但仍有10%的患者可痊愈,并无任何神经系统症状 [1] [2] 。本文将从流行病学、发病机制、诊断标准、治疗、预后等方面对其进行探讨。

2. 流行病学

目前尚无针对急性坏死性脑病的流行病学研究,ANE最初发现于日本和台湾儿童,故怀疑该病可能与种族因素有关 [3] 。但后来西方国家也有相关报道,包括一些成人病例 [4] ,表示该病发生与种族因素无关。本病全年均可发病,多见于冬季,男女发病率并无明显差异。该病多认为继发于病毒感染,包括甲型流感和乙型流感、新型甲型流感(H1N1)、副流感、水痘、人疱疹病毒-6和疱疹病毒7型(HHV-6和HHV-7)、肠道病毒、轮状病毒、单纯疱疹病毒、柯萨奇A9病毒和麻疹等 [2] [5] [6] [7] [8] ,其中流感病毒、人疱疹病毒-6最为常见。另外,自2019年新型冠状病毒在全球流行,新型冠状病毒相关性急性坏死性脑病已逐渐成为儿童重症和死亡的原因之一 [9] [10] [11] [12] 。除上述病毒感染外,ANE还可继发于肺炎支原体 [13] 及白喉、破伤风类毒素和全细胞百日咳疫苗接种等 [14] 。尽管有个案报道提示脑脊液中可能存在某些病毒的PCR检查呈阳性,但通过尸体解剖及病理检查并未发现脑炎相关线索,因此并不认为是一种病毒性脑炎 [15] [16] [17] ,因此普遍认为该病与感染后宿主免疫应答引起细胞因子风暴有关。

3. 发病机制

目前急性坏死性脑病的发病机制暂不清楚,目前普遍认为与细胞因子风暴有关,细胞因子风暴是由细胞因子和白细胞正反馈共同组成,似乎是ANE的共同特征。该病的病理特征为病变部位血脑屏障破坏,伴脑出血、细胞坏死和损伤,但无中性粒细胞、淋巴细胞等炎症细胞浸润。有研究发现在ANE患者中发现细胞因子升高,故提出“细胞因子风暴”在该疾病发病机制中发挥核心机制的可能性 [18] 。细胞因子风暴可导致全身症状,如肝功能损害、急性肾功能不全、休克和弥散性血管内凝血(Diffuse intravascular coagulation, DIC),在神经系统中可改变血管通透性而导致脑损伤 [19] 。此外,已有多项研究表明ANE患者血清和脑脊液的细胞因子升高,包括TNF-α、IL-6、L-10、IL-15、IL-1、IFN-γ等,其中TNF-α和IL-6最为重要 [1] [20] [21] 。有研究表明在脓毒症相关性脑病中IL-6和TNF-α等升高的细胞因子可破坏血脑屏障,随后增加血管通透性导致脑水肿、点状出血和坏死 [22] [23] 。Haorun Huang等人对22例开颅患者进行脑脊液IL-6检测并用动物模型证实,发现高浓度IL-6会引起的下丘脑损伤从而损伤认知功能 [24] ,而TNF-α可导致血脑屏障通透性增加,可能会损害中枢神经系统内皮细胞 [25] 。

此外,除环境因素,ANE的发生也与遗传因素有关,Neilson及其同事在核孔蛋白基因RANBP2中发现了ANE的遗传易感性 [26] ,该基因突变为常染色体显性遗传伴不完全外显率。RANBP2基因突变可能影响细胞内线粒体运输或能量产生和脂质过氧化,并影响包括病毒进入、抗原呈递、细胞因子信号传导、免疫应答和血脑屏障维持等功能 [18] 。但并非所有的复发或家族性ANE与RANBP2基因有关,编码电压门控钠离子通道α 1亚单位(sodium voltage-gated channel alpha 1, SCNIA)和肉碱棕榈酰转移酶II (carnitine palmitoyl transferase II, CPT2)的基因突变也与ANE有关 [27] [28] 。部分人类白细胞抗原基因型(human leukocyte antigen, HLA)与ANE易感性之间似乎也有关联 [29] [30] 。但这些并不足以解释ANE的发病机制。

4. 诊断标准

急性坏死性脑病是以高热后急性脑功能障碍为特点,其前驱症状根据不同病原体感染从而不同,如咳嗽、咳痰等呼吸道症状,呕吐、腹泻的消化道症状,严重者甚至还会出现全身炎症反应综合征,随病情进展可很快发生严重颅高压、脑疝,进而出现脑功能衰竭甚至脑死亡,其存活者往往会经历三个阶段,包括前驱期、急性脑病期、恢复期 [1] (见表1)。由于ANE患儿的症状、体征及辅助检查结果缺乏特异性,ANE的诊断主要基于临床症状和典型的神经影像学表现,因此只有在排除其他类似疾病之后才能明确诊断 [2] [31] 。颅脑MRI为最具诊断意义的影像学检查,但因CT检查耗时短,可作为危重症急性坏死性脑病的初始检查。

Table 1. Progress in clinical manifestations of acute necrotizing encephalopathy

表1. 急性坏死性脑病临床表现进展

ANE的诊断标准在1995年由Mizuguchi [2] 等人提出:(1) 感染性疾病发热后短期内出现抽搐、意识障碍等急性脑病症状;(2) 脑脊液蛋白升高,无细胞数增多;(3) 影像学提示多灶性对称性病变,主要累及双侧丘脑、基底节区、脑室周围白质、内囊、脑干被盖等;(4) 血清转氨酶不同程度升高,乳酸脱氢酶、肌酸激酶和尿素氮亦有增高,无高氨血症;(5) 排除其他类似疾病(代谢性、感染性、中毒性、自身免疫性等)。其中急性脑功能障碍和双侧丘脑对称性损害为诊断的必要条件。

随着家族性或复发性急性坏死性脑病(ANE1)的提出,Neilson [26] 等在原本的ANE诊断标准上做出补充,增加了以下三条诊断标准:(1) 家族中有相似的神经系统症状者;(2) 复发性脑病伴发热者;(3)头颅MRI显示病灶也可累及以下部位:颞叶内侧、岛叶、屏状核、外囊、杏仁核、海马、乳状体、脊髓。

5. 治疗

目前对于ANE患儿并无特效治疗方法,主要采取以免疫调节、生命支持为主的综合治疗。免疫调节治疗主要包括糖皮质激素和丙种球蛋白、托珠单抗、低体温等,对抑制细胞因子风暴有一定效果。

5.1. 糖皮质激素和丙种球蛋白

由于细胞因子风暴在疾病过程中的潜在作用,以大剂量糖皮质激素或静脉注射免疫球蛋白(intravenous immunoglobulin, IVIG)最常用。Okumura [32] 等人在研究中发现对于不合并脑干损伤的ANE患儿,早期(24 h内)使用大剂量糖皮质激素(甲泼尼龙30 mg/kg∙d,持续3天)与较好的预后有关。最近有一篇研究也表明早期使用大剂量类固醇激素与较好的预后有关 [33] 。我国一项单中心回顾性研究表明大剂量甲泼尼龙(20~30 mg/kg∙d)冲击治疗和丙种球蛋白(2 g/kg∙d,3~5天滴注)是预后的保护性因素,其中大剂量甲泼尼龙冲击治疗是预后的独立保护因素 [34] 。另外,我国一项多中心回顾性研究表明存活组应用大剂量激素(20 mg/kg)比例高于死亡组,可能会改善ANE患儿预后 [35] 。同样,对于复发的ANE1患者,在发病24小时内用20 mg/kg∙d的甲基强的松龙治疗5天,然后用甲基强的松龙2 mg/kg∙d治疗6周,与未予以免疫调节治疗的患者相比,有更好的改善及恢复 [36] 。因此早期(48 h内)大剂量使用甲基强的松龙(20~30 mg/kg∙d,持续3~5后减量)可能有利于改善患儿预后,但仍缺乏大量多中心、随机对照实验,其具体剂量、疗程以及是否联用尚未达成国际共识。

5.2. 托珠单抗

由于IL-6在细胞因子风暴较为重要,高浓度具有神经毒性作用,因此控制IL-6水平可能成为ANE的治疗方法。有一项研究发现对累及脑干而无RanBP2基因突变的高危ANE (ANE-SS = 5)患者,在神经系统出现症状后18~32小时使用托珠单抗(针对IL-6受体的单克隆抗体),在随访过程中2名患者完全康复,1名患者出现轻度功能障碍,考虑病初与大量出血有关,表明早期使用托珠单抗可能有助于改善预后 [37] 。另外有研究发现早期(24小时内)使用托珠单抗有利于改善预后以及托珠单抗联合甲泼尼龙、丙种球蛋白可提高ANE患者的生存率 [38] [39] 。总之,早期联合使用托珠单抗可作为ANE患者的附加治疗。但IL-6在抗感染的免疫反应中起关键作用,因此IL-6阻滞剂(如托珠单抗)可能会增加患者感染的风险,在治疗过程中需密切关注患者感染迹象。但托珠单抗的具体剂量和方案应根据患儿疾病类型和患者自身情况而不同。

5.3. 亚低温

亚低温可降低大脑代谢和脑血流量,并且具有抗炎作用 [40] 。亚低温能够减少促炎因子NF-κB的核转录,并降低ANE患者促炎因子水平,包括IL-6和TNF-α,从而起到抗细胞因子作用 [41] 。有病例报道显示低体温联合其他抗炎药物可用于治疗ANE,并获得较好的预后 [42] 。但亚低温可能会引起包括心律失常、凝血功能障碍等潜在风险,因此在治疗过程中需谨慎选择患者、仔细全面评估。

5.4. 丝氨酸蛋白酶抑制剂

丝氨酸蛋白酶在炎症反应中起关键作用 [43] ,因此阻断其活性可减轻炎症反应。尿胰蛋白酶抑制剂/乌司他丁是一种丝氨酸蛋白酶抑制,在日本被广泛用于治疗急性脓毒血症和DIC [44] [45] ,后者往往是ANE常见的临床特征。在脓毒血症动物模型中,用丝氨酸蛋白酶抑制剂治疗可减少TNF-α、IL-6和多种其他炎症介质 [46] 。乌司他丁可抑制p38 MAPK磷酸化,从而减少TNF-α相关基因的表达 [47] 。

目前,乌司他丁已在人体中进行评估。在脓毒血症患者中,乌司他丁被证明可以降低TNF-α和IL-6以及其他促炎介质的水平,同时增加抗炎因子IL-10抗炎水平 [44] [45] 。另外,内源性蛋白酶抑制剂在肝脏内合成,但ANE患者常常合并肝功能损害 [48] ,因此ANE患者可能因肝功能损害而减少蛋白酶抑制剂的释放,从而可能进一步加剧免疫反应,丝氨酸蛋白酶抑制剂可能成为治疗ANE药物,但仍需要进一步研究。

总之,早期开始免疫调节治疗,可改善其预后,除以上方法,血液净化疗法也可清除血液中的炎症介质,多种方法的联合治疗效果可能优于单一治疗方法。

6. 预后

ANE是一种进展的、高致死率、高致残率的疾病,其预后较差,其死亡率大约为30%~40%,存活者多遗留不同程度的神经功能障碍,包括局灶性无力、眼外异常、肌张力障碍/痉挛,或共济失调,极少部分能完全康复。神经系统后遗症往往与大脑受累部位和程度有关,需要支持性治疗 [49] 。回顾近年的研究发现,年龄 < 2岁、脑干受累、脑脊液蛋白升高、MRI提示出血或空洞、延迟治疗等通常提示预后不良 [5] [50] [51] [52] 。另外,为了更好评估ANE的严重程度和预后,Yamamoto [51] 等提出的ANE严重程度评分(ANE-SS,表2)和Wong [53] 等提出的MRI评分,多项研究显示ANE-SS和MRI评分可用于评估患者预后 [5] [35] [54] [55] 。

Table 2. Acute necrotizing encephalopathy severity score in children

表2. 儿童急性坏死性脑病严重程度评分

0~1分为低风险、2~4分为中风险、5~9分为高风险。

综上所述,ANE是一种罕见且快速进展的坏死性脑病,其发病机制暂不清楚,人们普遍认为是免疫介导相关性脑病,该病预后较差,随着时间推移可能会出现完全康复,其诊断依据主要是基于临床特征和双侧丘脑对称性病变的影像学特征,而排除其他疾病是诊断该病的前提条件。目前正在进行的ANE治疗研究主要是围绕抗细胞因子治疗有关,特别是针对IL-6,但仍需要进一步研究。临床医生需进一步提高对该病的认识,及早诊断和治疗可能有利于改善患儿预后。

NOTES

*通讯作者。

参考文献

[1] Wu, X., Wu, W., Pan, W., et al. (2015) Acute Necrotizing Encephalopathy: An Underrecognized Clinicoradiologic Dis-order. Mediators of Inflammation, 2015, Article ID: 792578.
https://doi.org/10.1155/2015/792578
[2] Mizuguchi, M., Abe, J., Mikkaichi, K., et al. (1995) Acute Necrotising Encephalopathy of Childhood: A New Syndrome Presenting with Multifocal, Symmetric Brain Lesions. Journal of Neurology, Neurosurgery & Psychiatry, 58, 555-561.
https://doi.org/10.1136/jnnp.58.5.555
[3] Mizuguchi, M. (1997) Acute Necrotizing Encephalopathy of Childhood: A Novel form of Acute Encephalopathy Prevalent in Japan and Taiwan. Brain and Development, 19, 81-92.
https://doi.org/10.1016/S0387-7604(96)00063-0
[4] Kobayashi, Y., Kanazawa, H., Hoshino, A., et al. (2019) Acute Necrotizing Encephalopathy and a Carnitine Palmitoyltransferase 2 Variant in an Adult. Journal of Clinical Neu-roscience, 61, 264-266.
https://doi.org/10.1016/j.jocn.2018.11.045
[5] Chow, C.K. and Ma, C.K.L. (2020) Presentation and Outcome of Acute Necrotizing Encephalopathy of Childhood: A 10-Year Single-Center Retrospective Study from Hong Kong. Jour-nal of Child Neurology, 35, 674-680.
https://doi.org/10.1177/0883073820927915
[6] Aksoy, E., Öztoprak, Ü., Çelik, H., et al. (2021) Acute Necrotiz-ing Encephalopathy of Childhood: A Single-Center Experience. Turkish Journal of Medical Sciences, 51, 706-715.
https://doi.org/10.3906/sag-2102-47
[7] 张涛, 王丽杰, 许巍, 等. 儿童急性坏死性脑病13例临床特点及预后随访[J]. 中华实用儿科临床杂志, 2022, 37(9): 665-670.
[8] Low, Y.Y., Lin, H.C., Wu, F.T., et al. (2021) Detec-tion of Rotavirus Antigen in a Child with Acute Necrotizing Encephalopathy. Journal of the Formosan Medical Associa-tion, 120, 1029-1031.
https://doi.org/10.1016/j.jfma.2020.08.047
[9] Wang, P.Y., Yang, M.T. and Liang, J.S. (2022) Acute Necrotizing Encephalopathy Caused by SARS-CoV-2 in a Child. Pediatrics & Neonatology, 63, 642-644.
https://doi.org/10.1016/j.pedneo.2022.06.003
[10] Ho, J.H.Y., Lee, C.Y.M., Chiong, Y.K., et al. (2023) SARS-CoV-2-Related Acute Necrotizing Encephalopathy of Childhood with Good Response to Tocilizumab in an Ado-lescent. Pediatric Neurology, 139, 65-69.
https://doi.org/10.1016/j.pediatrneurol.2022.11.010
[11] Tang, J.W., Ritchie, B., Taranath, A., et al. (2023) Case of Acute Necrotising Encephalopathy of Childhood Secondary to Severe Acute Respiratory Syndrome Coronavirus 2 Infec-tion. Journal of Paediatrics and Child Health.
https://doi.org/10.1111/jpc.16506
[12] Wu, D., Zheng, Y., Li, Y., et al. (2023) Exploring the Molecular and Clini-cal Spectrum of COVID-19-Related Acute Necrotizing Encephalopathy in Three Pediatric Cases. Journal of Human Ge-netics, 68, 769-775.
https://doi.org/10.1038/s10038-023-01171-z
[13] Lee, Y.J., Hwang, S.K., Lee, S.M. and Kwon, S. (2017) Familial Acute Necrotizing Encephalopathy with RANBP2 Mutation: The First Report in Northeast Asia. Brain and Development, 39, 625-628.
https://doi.org/10.1016/j.braindev.2017.02.005
[14] Aydin, H., Ozgul, E. and Agildere, A.M. (2010) Acute Ne-crotizing Encephalopathy Secondary to Diphtheria, Tetanus Toxoid and Whole-Cell Pertussis Vaccination: Diffu-sion-Weighted Imaging and Proton MR Spectroscopy Findings. Pediatric Radiology, 40, 1281-1284.
https://doi.org/10.1007/s00247-009-1498-9
[15] Lyon, J.B., Remigio, C., Milligan, T. and Deline, C. (2010) Acute Necrotizing Encephalopathy in a Child with H1N1 Influenza Infection. Pediatric Radiology, 40, 200-205.
https://doi.org/10.1007/s00247-009-1487-z
[16] Tabarki, B., Thabet, F., Al Shafi, S., et al. (2013) Acute Necrotiz-ing Encephalopathy Associated with Enterovirus Infection. Brain and Development, 35, 454-457.
https://doi.org/10.1016/j.braindev.2012.07.001
[17] Huang, W.S., Zhang, H., Wu, S., et al. (2022) A Sudden Death Due to Acute Necrotizing Encephalopathy Associated with Influenza A Virus Infection: An Autopsy Case Report. Legal Medicine, 58, Article ID: 102098.
https://doi.org/10.1016/j.legalmed.2022.102098
[18] Levine, J.M., Ahsan, N., Ho, E. and Santoro, J.D. (2020) Genetic Acute Necrotizing Encephalopathy Associated with RANBP2: Clinical and Therapeutic Implications in Pediatrics. Multiple Sclerosis and Related Disorders, 43, Article ID: 102194.
https://doi.org/10.1016/j.msard.2020.102194
[19] Kansagra, S.M. and Gallentine, W.B. (2011) Cytokine Storm of Acute Necrotizing Encephalopathy. Pediatric Neurology, 45, 400-402.
https://doi.org/10.1016/j.pediatrneurol.2011.09.007
[20] Hoshino, A., Takahashi, N., Oka, A. and Mizuguchi, M. (2023) Association of IL6 and IL10 Gene Promotor Polymorphisms with Susceptibility to Acute Necrotizing Encepha-lopathy. Frontiers in Neuroscience, 17, Article ID: 1231957.
https://doi.org/10.3389/fnins.2023.1231957
[21] Geng, C., Zhao, W., Wang, Z., et al. (2023) Acute Necrotizing Encephalopathy Associated with COVID-19: Case Series and Systematic Review. Journal of Neurology, 270, 5171-5181.
https://doi.org/10.1007/s00415-023-11915-8
[22] Galea, I. (2021) The Blood-Brain Barrier in System-ic Infection and Inflammation. Cellular & Molecular Immunology, 18, 2489-2501.
https://doi.org/10.1038/s41423-021-00757-x
[23] Catarina, A.V., Branchini, G., Bettoni, L., et al. (2021) Sep-sis-Associated Encephalopathy: From Pathophysiology to Progress in Experimental Studies. Molecular Neurobiology, 58, 2770-2779.
https://doi.org/10.1007/s12035-021-02303-2
[24] Huang, H., Liao, X., Zhang, A., et al. (2023) Cerebrospinal Flu-id from Patients after Craniotomy with the Appearance of Interleukin-6 Storm Can Activate Microglia to Damage the Hypothalamic Neurons in Mice. Molecular Neurobiology.
https://doi.org/10.1007/s12035-023-03693-1
[25] Tsao, N., Hsu, H.P., Wu, C.M., Liu, C.C. and Lei, H.Y. (2001) Tumour Necrosis Factor-α Causes an Increase in Blood-Brain Barrier Permeability during Sepsis. Journal of Medical Microbiology, 50, 812-821.
https://doi.org/10.1099/0022-1317-50-9-812
[26] Neilson, D.E., Adams, M.D., Orr, C.M., et al. (2009) Infec-tion-Triggered Familial or Recurrent Cases of Acute Necrotizing Encephalopathy Caused by Mutations in a Component of the Nuclear Pore, RANBP2. American Journal of Human Genetics, 84, 44-51.
https://doi.org/10.1016/j.ajhg.2008.12.009
[27] Saitoh, M., Shinohara, M., Hoshino, H., et al. (2012) Mutations of the SCN1A Gene in Acute Encephalopathy. Epilepsia, 53, 558-564.
https://doi.org/10.1111/j.1528-1167.2011.03402.x
[28] Kumakura, A., Iida, C., Saito, M., et al. (2011) Pandemic Influenza A-Associated Acute Necrotizing Encephalopathy without Neurologic Sequelae. Pediatric Neurology, 45, 344-346.
https://doi.org/10.1016/j.pediatrneurol.2011.08.004
[29] Hoshino, A., Saitoh, M., Miyagawa, T., et al. (2016) Specific HLA Genotypes Confer Susceptibility to Acute Necrotizing Encephalopathy. Genes & Immunity, 17, 367-369.
https://doi.org/10.1038/gene.2016.32
[30] Lee, Y.J., Hwang, S.K. and Kwon, S. (2019) Acute Necrotiz-ing Encephalopathy in Children: A Long Way to Go. Journal of Korean Medical Science, 34, e143.
https://doi.org/10.3346/jkms.2019.34.e143
[31] Albayram, S., Bilgi, Z., Selcuk, H., et al. (2004) Diffu-sion-Weighted MR Imaging Findings of Acute Necrotizing Encephalopathy. American Journal of Neuroradiology, 25, 792-797.
[32] Okumura, A., Mizuguchi, M., Kidokoro, H., et al. (2009) Outcome of Acute Necrotizing Encephalopathy in Relation to Treatment with Corticosteroids and Gammaglobulin. Brain and Development, 31, 221-227.
https://doi.org/10.1016/j.braindev.2008.03.005
[33] Chang, H.P., Hsia, S.H., Lin, J.J., et al. (2022) Early High-Dose Methylprednisolone Therapy Is Associated with Better Outcomes in Children with Acute Necrotizing En-cephalopathy. Children, 9, Article 136.
https://doi.org/10.3390/children9020136
[34] 王叶青, 李科纯, 杨颖, 等. 儿童急性坏死性脑病预后及影响因素分析[J]. 中华实用儿科临床杂志, 2022, 37(7): 530-533.
[35] 李科纯, 王丽杰, 刘刚, 等. 儿童急性坏死性脑病39例分析[J]. 中华儿科杂志, 2021, 59(7): 582-587.
[36] Soriano-Ramos, M., Navarro-Abia, V., Enamorado, N.N., et al. (2018) Steroids for Familial Acute Necrotizing Encephalopathy: A Future Investment? Clinical Neurology and Neu-rosurgery, 174, 134-136.
https://doi.org/10.1016/j.clineuro.2018.09.014
[37] Koh, J.C., Murugasu, A., Krishnappa, J. and Thomas, T. (2019) Favorable Outcomes with Early Interleukin 6 Receptor Blockade in Severe Acute Necrotizing Encephalopathy of Child-hood. Pediatric Neurology, 98, 80-84.
https://doi.org/10.1016/j.pediatrneurol.2019.04.009
[38] Hosie, P.H., Lim, C., Scott, T.R.D., et al. (2023) Treat-ment of Severe Acute Necrotizing Encephalopathy of Childhood with Interleukin-6 Receptor Blockade in the First 24 h as Add-on Immunotherapy Shows Favorable Long-Term Outcome at 2 Years. Brain and Development, 45, 401-407.
https://doi.org/10.1016/j.braindev.2023.03.002
[39] Lee, V.W.M., Khoo, T.B., The, C.M., et al. (2023) Factors Associated with Outcomes of Severe Acute Necrotizing Encephalopathy: A Multicentre Experience in Malaysia. Devel-opmental Medicine & Child Neurology, 65, 1256-1263.
https://doi.org/10.1111/dmcn.15536
[40] Varon, J. and Acosta, P. (2008) Therapeutic Hypothermia: Past, Present, and Future. Chest, 133, 1267-1274.
https://doi.org/10.1378/chest.07-2190
[41] Han, H.S., Karabiyikoglu, M., Kelly, S., et al. (2003) Mild Hypothermia Inhibits Nuclear Factor-κB Translocation in Experimental Stroke. Journal of Cerebral Blood Flow & Metabolism, 23, 589-598.
https://doi.org/10.1097/01.WCB.0000059566.39780.8D
[42] Vargas, W.S., Merchant, S. and Solomon, G. (2012) Favorable Outcomes in Acute Necrotizing Encephalopathy in a Child Treated with Hypothermia. Pediatric Neurology, 46, 387-389.
https://doi.org/10.1016/j.pediatrneurol.2012.03.001
[43] Sharony, R., Yu, P.J., Park, J., et al. (2010) Protein Tar-gets of Inflammatory Serine Proteases and Cardiovascular Disease. Journal of Inflammation, 7, Article No. 45.
https://doi.org/10.1186/1476-9255-7-45
[44] Karnad, D.R., Bhadade, R., Verma, P.K., et al. (2014) Intravenous Administration of Ulinastatin (Human Urinary Trypsin Inhibitor) in Severe Sepsis: A Multicenter Randomized Con-trolled Study. Intensive Care Medicine, 40, 830-838.
https://doi.org/10.1007/s00134-014-3278-8
[45] Wang, H., Liu, B., Tang, Y., et al. (2019) Improvement of Sepsis Prognosis by Ulinastatin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in Pharmacology, 10, Article 1370.
https://doi.org/10.3389/fphar.2019.01370
[46] Wakahara, K., Kobayashi, H., Yagyu, T., et al. (2005) Bikunin Suppresses Lipopolysaccharide-Induced Lethality through Down-Regulation of Tumor Necrosis Factor-α and Interleu-kin-1β in Macrophages. The Journal of Infectious Diseases, 191, 930-938.
https://doi.org/10.1086/428134
[47] Zhang, X., Liu, F., Liu, H., et al. (2011) Urinary Trypsin Inhibitor Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Blocking the Activation of p38 Mitogen-Activated Protein Kinase. In-flammation Research, 60, 569-575.
https://doi.org/10.1007/s00011-010-0305-2
[48] Pugia, M.J. and Lott, J.A. (2005) Pathophysiology and Diagnostic Value of Urinary Trypsin Inhibitors. Clinical Chemistry and Laboratory Medicine (CCLM), 43, 1-16.
https://doi.org/10.1515/CCLM.2005.001
[49] Fong, C.Y., Saw, M.T., Li, L., et al. (2021) Malaysian Outcome of Acute Necrotising Encephalopathy of Childhood. Brain and Development, 43, 538-547.
https://doi.org/10.1016/j.braindev.2020.12.003
[50] Zhu, H.M., Zhang, S.M., Yao, C., et al. (2021) The Clinical and Imaging Characteristics Associated with Neurological Sequelae of Pediatric Patients with Acute Necrotizing Enceph-alopathy. Frontiers in Pediatrics, 9, Article 655074.
https://doi.org/10.3389/fped.2021.655074
[51] Yamamoto, H., Okumura, A., Natsume, J., et al. (2015) A Severity Score for Acute Necrotizing Encephalopathy. Brain and Development, 37, 322-327.
https://doi.org/10.1016/j.braindev.2014.05.007
[52] Song, Y., Li, S., Xiao, W., et al. (2021) Influenza-Associated Encephalopathy and Acute Necrotizing Encephalopathy in Children: A Retrospective Single-Center Study. Medical Sci-ence Monitor, 27, e928374.
https://doi.org/10.12659/MSM.928374
[53] Wong, A.M., Simon, E.M., Zimmerman, R.A., et al. (2006) Acute Necrotizing Encephalopathy of Childhood: Correlation of MR Findings and Clinical Outcome. American Journal of Neuroradiology, 27, 1919-1923.
[54] Appavu, B., Foldes, S., Fox, J., et al. (2021) Treatment Timing, EEG, Neuroim-aging, and Outcomes after Acute Necrotizing Encephalopathy in Children. Journal of Child Neurology, 36, 517-524.
https://doi.org/10.1177/0883073820984063
[55] Wu, L., Peng, H., Jiang, Y., et al. (2022) Clinical Features and Imaging Manifestations of Acute Necrotizing Encephalopathy in Children. International Journal of Developmental Neu-roscience, 82, 447-457.
https://doi.org/10.1002/jdn.10201