IGF2BP2在非肿瘤与肿瘤中的作用的研究现状及进展
Research Status and Progress of the Role of IGF2BP2 in Non-Tumor and Neoplasm
DOI: 10.12677/ACM.2024.141113, PDF, HTML, XML, 下载: 234  浏览: 320  科研立项经费支持
作者: 许晓丽, 刘源静, 李慧玲, 宋欣玉, 董 朝*:新疆医科大学附属肿瘤医院乳腺甲状腺外科,新疆 乌鲁木齐
关键词: IGF2BP2RNA结合蛋白m6A阅读器IGF2BP2 RNA-Binding Proteins m6A Reader
摘要: IGF2BP2被认为是2型糖尿病(T2DM)相关基因,其通过对多种细胞类型中众多基因的转录后调节来调节人类代谢疾病(如糖尿病、肥胖症和脂肪肝)的细胞代谢;而作为m6A阅读器,IGF2BP2通过与不同的RNA通信,如microRNA (miRNA)、信使RNA (mRNA)和长链非编码RNA (lncRNA)参与癌症的发生和进展。我们通过综述IGF2BP2在非肿瘤与肿瘤中的作用,以望更深层次地挖掘到IGF2BP2在疾病中的作用机制。
Abstract: IGF2BP2 is considered to be a type 2 diabetes (T2DM) related gene that regulates cellular metabo-lism in human metabolic diseases such as diabetes, obesity, and fatty liver through post-transcriptional regulation of numerous genes in multiple cell types. As an m6A reader, IGF2BP2 is involved in the development and progression of cancer by communicating with different RNAs, such as microRNA (miRNA), messenger RNA (mRNA) and long non-coding RNA (lncRNA). By reviewing the role of IGF2BP2 in non-tumor and tumor, we hope to dig deeper into the mechanism of IGF2BP2 in disease.
文章引用:许晓丽, 刘源静, 李慧玲, 宋欣玉, 董朝. IGF2BP2在非肿瘤与肿瘤中的作用的研究现状及进展[J]. 临床医学进展, 2024, 14(1): 809-812. https://doi.org/10.12677/ACM.2024.141113

1. IGF2BP2在非肿瘤中的研究进展

人胰岛素样生长因子2 (IGF2) mRNA结合蛋白2 (IGF2BP2/IMP2)作为一种调节多种生物过程的RNA结合蛋白(RBP),因其结合IGF2先导蛋白3 mRNA的能力而被发现 [1] 。IGF2BP2在非肿瘤的代谢性疾病中的研究较为丰富 [2] ,IGF2BP2通过对多种细胞类型中许多基因的转录后调节来调节糖尿病、肥胖症和脂肪肝等人类代谢疾病中的细胞代谢 [3] 。在小鼠模型中,在小鼠肝脏中过表达IMP2导致脂肪变性 [4] ,而IMP2缺失的小鼠对饮食诱导的肥胖和脂肪肝具有高度抗性,表现出超强的糖耐量和胰岛素敏感性,能量消耗增加,在寒冷暴露下对核心温度有更好的防御能力。在缺乏IMP2的情况下,大多数mRNA的翻译效率也会提高 [5] 。近来,在神经保护方面,miR-196a通过抑制亨廷顿舞蹈症中的IMP3和上调IGF2来增强神经元微丝的聚合,从而通过亨廷顿舞蹈症中的神经元细胞骨架支持miR-196a的神经保护功能 [6] 。在肌细胞的增殖与分化方面,有研究表明RNA结合蛋白可发挥不可小觑的作用 [7] ;IMP在小鼠和人类胚胎的发育中特别表达上皮、肌肉和胎盘 [1] ,近期也有与IMP2有关的报道:circIGF2BP2促进鸡成肌细胞的增殖和分化 [8] 。

2. IGF2BP2在肿瘤中的研究进展

肿瘤的发病机制复杂,其中,“细胞能量学”广受关注 [9] 。百年前首次详细描述了肿瘤与非增殖正常组织相比,前者对葡萄糖的消耗显着增加的结论 [10] ,之后在不同的肿瘤环境中都得到了证实,且证明与肿瘤预后不良密切相关 [11] 。IGF2具有致癌性,其功能丧失剪接变体可预防2型糖尿病;作为最复杂的调节生长因子之一,它还受表观遗传改变的控制 [12] 。IGF2 mRNA结合蛋白(IMPs/IGF2BPs)与IGF2转录本复合,介导其加工,如定位、稳定性和翻译 [13] ,而在缺乏IGF2BP2的情况下,大多数mRNA的翻译效率也会提高,进而限制小鼠的寿命并调节小鼠的营养和能量代谢 [5] [14] 。IGF2活性通过IGFBPs和靶受体的差异表达来控制 [15] 。有研究指出,IGF2BP2不仅仅与IGF2 mRNA结合 [16] ,它还靶向多个转录本,IGF2BP2的这种多靶点特征与其在细胞的脂质代谢、胰岛素抵抗以及肿瘤的发生等方面的广泛生理病理功能有着紧密的联系。最近的研究揭示:IGF2BP2是一种N6-甲基腺苷(m6A)阅读器,通过与多种RNA相互作用,参与癌症的发展和进展。m6A甲基化的修饰在表观转录组中是最丰富且研究最深入的RNA修饰之一,它涵盖了mRNA代谢的诸多环节,包括mRNA输出、翻译、稳定性和剪接等 [17] 。此外,IGF2BP2是多种癌症类型的独立预后因素 [18] 。例如,在乳腺肿瘤中,与管腔或顶泌亚型相比,IGF2BP2在基底样乳腺癌组织中过度表达,并且在乳腺癌组织中上调了自身免疫反应 [19] 。在胰腺肿瘤的研究中,IGF2BP2过表达明显,其通过直接结合和稳定GLUT1 mRNA来促使胰腺导管腺癌细胞的有氧糖酵解和增殖 [20] [21] 。在过去的几年里,越来越多的实验数据证明了IGF2BP2与癌症进展的联系,包括肝癌 [22] 、胰腺癌 [23] 、乳腺癌 [24] 、卵巢癌 [25] 、结直肠癌 [26] 和食管癌 [27] 等,特别是癌症干细胞的维持 [14] 。已发现miRNA作为重要的转录后调节因子参与卵巢功能的调节,包括卵泡发育、类固醇生成、细胞闭锁甚至卵巢癌发展的调节因子,gga-miR-449b-5p可以靶向IGF2BPs并下调它的mRNA和蛋白表达,作为蛋鸡卵巢颗粒细胞中合成类固醇激素的有效调节因子,可能有助于更好地了解功能性miRNA在蛋鸡卵巢发育中的作用 [28] 。

3. 结语

无论是组织细胞的增殖分化,还是代谢的关键步骤,IGF2BP2在各类疾病中都已有广泛的研究;肿瘤的代谢重编程是近年来的一大研究热点,IGF2BP2在各类肿瘤细胞中高表达,且促进肿瘤细胞的增殖侵袭已有多项实验数据支持。IGF2BP2的另一个角色:m6A阅读器,在肿瘤的发生与进展的过程中又发挥了怎样的作用,在最近的研究中研究者们都在逐步探索。今后,将对IGF2BP2进行更深入的研究,有望为相关肿瘤的预防、诊疗提供可行的思路和潜在的靶标。

基金项目

省部共建中亚高发病成因与防治国家重点实验室开放课题资助项目,SKL-HIDCA2022-JZ2。

NOTES

*通讯作者。

参考文献

[1] Nielsen, J., Christiansen, J., Lykke-Andersen, J., Johnsen, A.H., et al. (1999) A Family of Insulin-Like Growth Factor II mRNA-Binding Proteins Represses Translation in Late Development. Molecular and Cellular Biology, 19, 1262-1270.
https://doi.org/10.1128/MCB.19.2.1262
[2] Dai, N. (2020) The Diverse Functions of IMP2/IGF2BP2 in Metabo-lism. Trends in Endocrinology and Metabolism, 31, 670-679.
[3] Barghash, A., Helms, V. and Kessler, S.M. (2015) Overexpression of IGF2 mRNA-Binding Protein 2 (IMP2/p62) as a Feature of Basal-Like Breast Cancer Correlates with Short Survival. Scandinavian Journal of Immunology, 82, 142-143.
https://doi.org/10.1111/sji.12307
[4] Tybl, E., Shi, F.D., Kessler, S.M., et al. (2011) Overexpression of the IGF2-mRNA Binding Protein p62 in Transgenic Mice In-duces a Steatotic Phenotype. Journal of Hepatology, 54, 994-1001.
[5] Dai, N., Zhao, L., Wrighting, D., et al. (2015) IGF2BP2/IMP2 Deficient Mice Resist Obesity through Enhanced Translation of Ucp1 mRNA and Other mRNAs En-coding Mitochondrial Proteins. Cell Metabolism, 21, 609-621.
https://doi.org/10.1016/j.cmet.2015.03.006
[6] Yang, H.I., Huang, P.Y., Chan, S.C., et al. (2022) miR-196a En-hances Polymerization of Neuronal Microfilaments through Suppressing IMP3 and Upregulating IGF2 in Huntington’s Disease. Molecular Therapy. Nucleic Acids, 30, 286-299.
https://doi.org/10.1016/j.omtn.2022.10.002
[7] Claus, C., Slavin, M., Ansseau, E., et al. (2023) The Double Homeodomain Protein DUX4c Is Associated with Regenerating Muscle Fibers and RNA-Binding Proteins. Skeletal Muscle, 13, Article No. 5.
https://doi.org/10.1186/s13395-022-00310-y
[8] Wang, X., Lin, J., Jiao, Z., et al. (2023) Circular RNA cir-cIGF2BP3 Promotes the Proliferation and Differentiation of Chicken Primary Myoblasts. International Journal of Mo-lecular Sciences, 24, Article 15545.
https://doi.org/10.3390/ijms242115545
[9] Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46.
[10] Warburg, O., Wind, F. and Negelein, E. (1927) The Metabolism of Tumors in the Body. The Journal of General Physiology, 8, 519-530.
[11] Som, P., Atkins, H.L., Bandoypadhyay, D., et al. (1980) A Fluori-nated Glucose Analog, 2-Fluoro-2-Deoxy-D-Glucose (F-18): Nontoxic Tracer for Rapid Tumor Detection. Journal of Nuclear Medicine, 21, 670-675.
[12] Cao, J., Yan, W., Ma, X., et al. (2021) Insulin-Like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link between Type 2 Diabetes Mellitus and Cancer. The Journal of Clinical Endo-crinology and Metabolism, 106, 2807-2818.
https://doi.org/10.1210/clinem/dgab391
[13] Lunde, B.M., Moore, C. and Varani, G. (2007) RNA-Binding Pro-teins: Modular Design for Efficient Function. Nature Reviews Molecular Cell Biology, 8, 479-490.
https://doi.org/10.1038/nrm2178
[14] Cao, J.G., Mu, Q.C. and Huang, H.Y. (2018) The Roles of Insulin-Like Growth Factor 2 mRNA-Binding Protein 2 in Cancer and Cancer Stem Cells. Stem Cells International, 2018, Article ID: 4217259.
[15] Kessler, S.M., Haybaeck, J. and Kiemer, A.K. (2016) Insulin-Like Growth Factor 2—The Oncogene and Its Accomplices. Current Pharmaceutical Design, 22, 5948-5961.
https://doi.org/10.2174/1381612822666160713100235
[16] Zhou, H., Sun, Q., Feng, M., et al. (2023) Regulatory Mechanisms and Therapeutic Implications of Insulin-Like Growth Factor 2 mRNA-Binding Proteins, the Emerging Cru-cial m6A Regulators of Tumors. Theranostics, 13, 4247-4265.
https://doi.org/10.7150/thno.86528
[17] Nielsen, F.C., Nielsen, J. and Christiansen, J. (2001) A Family of IGF-II mRNA Binding Proteins (IMP) Involved in RNA Trafficking. Scandinavian Journal of Clinical and Laboratory Inves-tigation, 61, 93-99.
[18] Wang, J.Y., Chen, L.J. and Qiang P., (2021) The Role of IGF2BP2, an m6A Reader Gene, in Human Metabolic Diseases and Cancers. Cancer Cell International, 21, Article No. 99.
[19] Liu, W., Li, Y., Wang, B., et al. (2015) Autoimmune Response to IGF2 mRNA-Binding Protein 2 (IMP2/p62) in Breast Cancer. Scandinavian Journal of Immunology, 81, 502-507.
https://doi.org/10.1111/sji.12285
[20] Huang, S., Wu, Z., Cheng, Y., Wei, W.Z. and Hao, L.L. (2019) Insulin-Like Growth Factor 2 mRNA Binding Protein 2 Promotes Aerobic Glycolysis and Cell Proliferation in Pancreatic Ductal Adenocarcinoma via Stabilizing GLUT1 mRNA. Acta Biochimica et Biophysica Sinica, 51, 743-752.
https://doi.org/10.1093/abbs/gmz048
[21] Zhang, Z. and Zhang, H.J. (2021) Glycometabolic Rearrangements-Aerobic Glycolysis in panCreatic Ductal Adenocarcinoma (PDAC): Roles, Regulatory Networks, and Therapeutic Potential. Expert Opinion on Therapeutic Targets, 25, 1077-1093.
https://doi.org/10.1080/14728222.2021.2015321
[22] Pu, J., Wang, J.C., Qin, Z.B., et al. (2020) IGF2BP2 Pro-motes Liver Cancer Growth through an m6A-FEN1-Dependent Mechanism. Frontiers in Oncology, 10, Article 578816.
https://doi.org/10.3389/fonc.2020.578816
[23] Liu, Y.H., Shi, M.M., He, X.F., et al. (2022) LncRNA-PACERR Induces Pro-Tumour Macrophages via Interacting with miR-671-3p and m6A-Reader IGF2BP2 in Pancreatic Ductal Adenocarcinoma. Journal of Hematology & Oncology, 15, Article No. 52.
https://doi.org/10.1186/s13045-022-01272-w
[24] Liu, G.H., Zhu, T.N., Cui, Y.J., et al. (2015) Correlation be-tween IGF2BP2 Gene Polymorphism and the Risk of Breast Cancer in Chinese Han Women. Biomedicine & Pharma-cotherapy, 69, 297-300.
[25] Shi, Y.Q., Xiong, X.Y., Sun, Y., et al. (2023) IGF2BP2 Promotes Ovarian Cancer Growth and Metastasis by Upregulating CKAP2L Protein Expression in an m6 A-Dependent Manner. FASEB Journal, 37, e23183.
https://doi.org/10.1096/fj.202202145RRR
[26] Yao, B., Zhang, Q.L., Yang, Z., et al. (2022) Cir-cEZH2/miR-133b/IGF2BP2 Aggravates Colorectal Cancer Progression via Enhancing the Stability of m6A-Modified CREB1 mRNA. Molecular Cancer, 21, Article No. 140.
https://doi.org/10.1186/s12943-022-01608-7
[27] Vita, M. and Henriksson, M. (2006) The Myc Oncoprotein as a Therapeutic Target for Human Cancer. Seminars in Cancer Biology, 16, 318-330.
https://doi.org/10.1016/j.semcancer.2006.07.015
[28] Wu, X., Zhang, N., Li, J., et al. (2022) gga-miR-449b-5p Regulates Steroid Hormone Synthesis in Laying Hen Ovarian Granulosa Cells by Targeting the IGF2BP3 Gene. Animals, 12, Article 2710.
https://doi.org/10.3390/ani12192710