血清Chemerin的临床预测价值及研究进展
Clinical Predictive Value and Research Progress of Serum Chemerin
DOI: 10.12677/acm.2024.1441341, PDF, HTML, XML, 下载: 31  浏览: 50 
作者: 江 倩:重庆医科大学第二临床学院,重庆;李生兵*:重庆医科大学附属第二医院内分泌代谢病科,重庆
关键词: 脂肪因子Chemerin2型糖尿病炎症Fat Factor Chemerin Type 2 Diabetes Mellitus (T2DM) Inflammation
摘要: Chemerin是一种由脂肪细胞分泌的脂肪因子,在白色脂肪组织中高表达,以自分泌/旁分泌的方式发挥生物学作用,与肥胖、胰岛素抵抗和代谢综合征有关。近年来,Chemerin因其在不同器官和系统,如代谢、炎症和癌症等中发生控制中的多重作用而引起了特别的关注。因此,积极探索Chemerin在高血压、糖脂代谢及肿瘤等相关疾病中的作用有助于临床疾病的早期诊断,为治疗相关疾病提供新方向。
Abstract: Chemerin, a adipokine secreted by adipocytes, is highly expressed in white adipose tissue and exerts its biological effects through autocrine/paracrine mechanisms. It is associated with obesity, insulin resistance, and metabolic syndrome. In recent years, Chemerin has gained particular attention due to its multiple roles in various organs and systems, such as metabolism, inflammation, and cancer control. Therefore, actively exploring the role of Chemerin in related diseases such as hypertension, glucose and lipid metabolism, and tumors can contribute to the early diagnosis of clinical diseases and provide new directions for the treatment of related diseases.
文章引用:江倩, 李生兵. 血清Chemerin的临床预测价值及研究进展[J]. 临床医学进展, 2024, 14(4): 2647-2655. https://doi.org/10.12677/acm.2024.1441341

1. 引言

脂肪组织虽然传统上被认为是一个能量库,但最近的证据表明,脂肪因子在免疫应答中起着特殊的作用(例如,酰化刺激蛋白、白细胞介素)和炎症(例如,IL-1β、IL-6、IL-8、IL-10、CrP、趋化蛋白)、葡萄糖代谢(例如,瘦素、脂联素、Leptin)、胰岛素敏感性(例如,瘦素、脂联素、chemerin)、高血压(例如血管紧张素原)、脂质代谢(例如CD 36)、食欲和饱腹感的调节(例如瘦素、vaspin)、等其他生物过程 [1] [2] [3] 。目前,脂肪组织被认为是最大的功能活跃的内分泌器官,其作用是自分泌和旁分泌释放多种脂肪因子,如瘦素、脂联素、抵抗素、肿瘤坏死因子α (tumor necrosis factor-α,TNF-α)、白细胞介素6 (interleukin-6, IL-6)等,人类的能量平衡是由几种调节机制控制的,体内细胞的免疫应答、能量代谢平衡、神经内分泌功能、心血管功能等都与脂肪因子有密切相关的联系 [4] [5] 。其中,脂肪细胞因子之一的Chemerin引起了人们越来越多的关注,Chemerin被认为是一种对人类或生物具有多效性影响的重要蛋白质,因其具有趋化白细胞的功能故被命名为趋化素。很多研究证实,许多代谢性疾病,如肥胖、2型糖尿病、动脉粥样硬化、高血压、高脂血症等,都与局部或循环的趋化素水平升高有关 [6] 。现就血清Chemerin及其结构分布及相关作用机制予以综述,以期为进一步解决相关疾病的临床问题提供新途径。

2. 什么是Chemerin

2.1. Chemerin的结构特征

Chemerin于1997年在研究银屑病时首次被发现,且因为它可以在某些条件下被TIG2诱导,故命名他扎罗汀诱导基因2 (TIG2),该配体被鉴定为孤儿受体ChemR 23,并正式命名为Chemerin,其被证明是一种脂肪因子 [7] [8] 。Chemerin蛋白的前体形式是由163个氨基酸组成的前蛋白质原preprochchemerin,preprochchemerin经中性粒细胞通过丝氨酸蛋白酶依赖性机制转化为preprochchemerin (chemerin21E.163S) [9] [10] 。目前,所有调节Chemerin活性的蛋白酶都是通过羧基端来发挥作用的,说明prochemerin蛋白的这个区域对于Chemerin的生物活性是非常重要的。此外,一些蛋白酶例如弹性蛋白酶和类胰蛋白酶可在多个部位进行加工处理prochemerin,许多Chemerin亚型也可能被进一步加工处理 [11] 。这些都表明prochemerin蛋白对Chemerin的活性有着极其重要的作用。

2.2. Chemerin的表达与作用

Chemerin由多个不同的器官合成和释放,例如肝脏、卵巢、淋巴结和胰腺、胸腺、淋巴结、骨髓、阑尾、卵巢、皮肤和胎儿肝等,在白色脂肪组织中的表达高于棕色脂肪组织,且在脂肪细胞中的表达要高于血管基质部分 [12] ,除了肝脏,白色脂肪组织被认为是循环中chemerin的主要来源。Chemerin是表达G蛋白偶联受体CMKLR1细胞的自然配体和趋化信号 [13] ,也可与另外一种G蛋白偶联受体GPR1相结合。到目前为止,所有已知的有关Chemerin的生物学作用都是通过CMKLR1来发挥的。与慢性疾病相关的免疫反应中细胞因子途径的刺激有关,且显著改变了血脂水平脂肪代谢的变化 [14] 。因此,Chemerin可作为血脂异常及其相关心血管代谢紊乱疾病的生物标志物。研究证明Chemerin与炎性疾病如类风湿性关节炎、银屑病、克罗恩病中的炎症标志物相关的循环趋化素水平升高,并且在各种炎性流体中检测到升高的趋化素水平,包括来自卵巢癌和肝癌的腹水渗出物以及来自关节炎患者的滑液。血浆Chemerin水平与体脂、葡萄糖和脂质代谢以及炎症相关 [15] [16] 。Chemerin具有几种生物学功能:它在适应性和先天性免疫中起作用,并被发现调节白细胞募集,特别是树突细胞,巨噬细胞和自然杀伤细胞,朝向炎症部位,以亚纳摩尔浓度起作用。

3. Chemerin与代谢综合征

代谢综合征(MS)是一个严重危害人类健康的普遍全球公共卫生问题,研究证明,MS可显著增加糖尿病以及心脑血管疾病等慢性疾病的发病率和病死率 [17] 。多项研究表明,血清Chemerin水平与代谢综合征的各项指标(如血压、血脂、肥胖、血糖)紧密相关 [18] [19] ,故认为,Chemerin是代谢综合征的危险因素,并对其严重程度具有相关预测作用。一项研究报道,在韩国成年人群中具有最高Chemerin水平的患者患MS的风险最大 [20] 。此外,另有研究证明,在没有主要混杂变量情况下:如糖尿病、动脉粥样硬化性心血管疾病、吸烟和血脂异常治疗的MS患者中,血浆Chemerin和皮下脂肪组织分泌的Chemerin均增加 [21] 。相反,在进行12周的有氧运动训练,肥胖受试者体重减轻(特别是内脏脂肪)后,Chemerin水平显著下降,同时胰岛素抵抗和肥胖参数改善。Chemerin浓度的降低表明,12周有氧训练后腹部脂肪的变化可能在调节巨噬细胞浸润到脂肪组织和血清炎症标志物 [22] 。

4. Chemerin与高血压

高血压被认为是代谢综合征的重要组成部分,有研究证明,2型糖尿病 + 高血压组患者的血浆Chemerin水平明显高于2型糖尿病 + 正常人组(P < 0.01),故可认为血浆Chemerin水平的改变与糖脂代谢与血压有关,且高血压患者的血清Chemerin水平显著较高 [23] [24] 。一项研究揭示了Chemerin通过Gi发挥作用,蛋白质激活L型Ca2+通道并在血管平滑肌细胞中释放剂量依赖性钙内流,表明这是Chemerin诱导的血管收缩和高血压的基础 [25] 。体外研究还表明Chemerin可诱导细胞外信号调节激酶1/2 (ERK1/2)的磷酸化 [26] ,其主要通过激活3T3L-1细胞中ERK1/2而起着促进阻力血管纤维化进而导致高血压的形成。此外,值得注意的是,Chemerin在肾脏内高度表达,且肾脏是血压调节的关键部位。这表明Chemerin有可能是一种新的血压调节剂 [27] 。尽管Chemerin与代谢特征存在潜在相关性,但在调整人体代谢风险因素后,推测高Chemerin水平可作为高血压的独立预测因子 [28] 。

5. Chemerin与2型糖尿病

糖尿病与代谢性疾病之间的关系密切,其特征有继发于胰岛素抵抗的血糖升高,使个体面临许多长期并发症的风险升高,包括卒中、心肌梗死、肾衰竭和失明等并发症,且T2DM已达到流行病的程度,仅在美国就有超过2500万儿童和成人患有这种疾病,每年的医疗保健费用为1750亿美元 [29] [30] 。而脂肪因子是脂肪组织发育和功能的重要调节剂,对各种组织中的葡萄糖代谢具有显著影响,并影响全身水平的总体能量平衡 [31] 。有实验证据支持并证明:直接影响各种组织中胰岛素敏感性和葡萄糖代谢的脂肪因子的合成和分泌改变,同样有助于肥胖症中胰岛素抵抗和T2 DM的发展 [32] 。一项前瞻性研究表明,全身Chemerin的升高先于T2 DM的发作,表明Chemerin可作为T2 DM早期诊断的生物标志物 [33] 。另外Chemerin可能对胰岛素敏感性和葡萄糖摄入有直接的作用。Chemerin与葡萄糖稳态及2型糖尿病(T2DM)以空腹血糖升高和胰岛素刺激的葡萄糖摄入减少为特点,主要是由于肝脏、肌肉和脂肪组织长期对胰岛素的敏感性下降所致 [34] 。葡萄糖刺激的胰岛素分泌和外周组织胰岛素刺激的葡萄糖摄入均有利于调节葡萄糖耐量,该调节功能紊乱被认为是Chemerin介导葡萄糖耐量中导致异常(IGT)的潜在因素。但Chemerin对葡萄糖代谢的影响是不均匀的。与正常葡萄糖耐受(NGT)对照相比,发现2型糖尿病患者血清中的Chemerin血清水平升高 [35] 。

6. Chemerin与高血脂

高脂血症是脂质代谢功能异常的一种标志性疾病,它引发了许多高危病种。当脂质代谢发生紊乱,血液粘连管壁,无法使血液正常流通,从而导致脂质与管壁产生粘黏性作用,导致大量脂质蓄积,进而去破坏局部组织形成粥样斑块,引发动脉粥样硬化的发生,进而造成心血管疾病的发生与发展 [36] 。脂肪因子是脂肪组织衍生因子,影响全身性脂质和HDL代谢,参与血管功能和炎症的调节 [37] 。当脂肪细胞代谢功能出现异常时,促炎脂肪因子的数量大幅提高,并与动脉粥样硬化进展相关 [38] 。Chemerin作为脂肪因子的同时也可作为一种诱导因子,促进免疫细胞向损伤部位招募。Chemerin促进脂肪组织的分解代谢,TG及游离脂肪酸释出,加剧了高脂血症 [39] 。Chemerin通过激活CMKLR1,使细胞内钙离子浓度增加,导致ERK1/2磷酸化、激素敏感性脂肪酶(HSL)激活,从而使成熟脂肪细胞的脂肪分解 [40] ,缺乏Chemerin的表达将导致脂解作用降低。Chemerin水平的升高与脂质代谢也密切相关,可增加心血管疾病的危险性。故可认为,Chemerin在脂质代谢中有一定的作用,并且可作为这类疾病中的独立预测因子。

7. Chemerin与心血管疾病

由于人民生活的日益改善,使得心血管疾病的患病率日益增加。而肥胖和代谢综合征发生代谢紊乱的患者中约1/3会出现心血管疾病,而在该类患者中的血清Chemerin水平也出现了改变。Chemerin作为生长因子,诱导基质金属蛋白酶(MMP)-2和-9活性,进而引起血管的生长和重塑,包括内皮细胞(EC)增殖、迁移和血管生成。Bozaoglu等人报道了Chemerin以时间和剂量依赖性方式去增加微血管内皮细胞(EC)中的血管生成,进而表明其在血管中的作用 [41] [42] 。哈特和Greaves [40] 报道,Chemerin促进巨噬细胞粘附于细胞外基质蛋白纤连蛋白和血管细胞粘附分子(VCAM)-1。Chemerin和CMKLR 1受体敲低均会导致正常的成熟脂肪细胞功能进一步障碍,这是由于其有助于维持葡萄糖和脂质稳态的特定基因的表达水平发生改变,从而进一步使心血管(CV)系统疾病发生发展。研究证明,Chemerin与炎症生物标志物(包括高敏C反应蛋白、白细胞介素和TNF-α)等呈正相关 [43] 。所以,Chemerin在人类肥胖、炎症和动脉粥样硬化之间有着密切联系。Gasbarrino K等人发现,循环Chemerin水平降低与颈动脉斑块不稳定有相关关系,其可直接影响血管功能 [44] 。故Inci S等人报告Chemerin是CV事件的独立预测因子 [43] 。

8. Chemerin与肾脏疾病

慢性肾脏病(CKD)是一种全球性的健康问题之一,其特征是进行性的肾功能丧失,且同时伴随心血管风险的增加。一项研究表明,循环Chemerin浓度升高与肾功能障碍进展之间可能存在着密切的相关联系 [45] 。此外,除了其在Chemerin消除中的作用之外,肾脏本身可能通过其合成并影响血清Chemerin浓度,且Chemerin表达可以在动物肾脏中发现 [46] 。相关性分析显示,即使努力调整了许多混杂因素后,血浆Chemerin也可去预测肾脏疾病的相关损害。此外,在Leiherer等人 [47] 的研究中,在低Chemerin水平的受试者中也发生了肾功能不全的进展,程度虽小但显著。有研究证实Chemerin存在于严重肾损害患者的肾小管上皮细胞和淋巴管内皮血管中,还发现内皮细胞和近端肾小管上皮细胞在体外产生Chemerin [48] 。在Chemerin产生的部位,有检测到位于肾小管周围和肾小球周围水平的浸润性ChemR 23 + 树突状细胞,表明Chemerin的局部产生在肾小管间质水平并促进肾脏内树突状细胞的特异性趋化性 [47] 。一些研究显示,糖尿病大鼠肾脏中Chemerin的表达水平与炎症标志物(如TNF-α和ICAM-1)显著相关,因此证实了Chemerin与炎症以及参与肾纤维化和硬化的转化生长因子-β1和结缔组织生长因子的相关性 [49] 。Chemerin与炎症和纤维化相关因子的相关性表明Chemerin可能与肾损害相关,Chemerin拮抗作用也可能有利于减缓肾脏疾病进展。体内和体外研究均表明,Chemerin可增强TGFβ1/Smads通路的传导,上调CTGF的表达,从而促进DKD的发生和进展 [50] 。另外,Chemerin可能与心血管功能疾病相关,因此进一步导致CKD的CV风险增加。考虑到肾功能作为心血管危险因素的重要性,Chemerin作为生物标志物的新作用在这一患者群体中值得特别关注。

9. Chemerin与炎症性疾病

炎症是抵抗病原体和局部损伤的生理机制。通常,炎症反应是自限性的,因为不受控制的炎症可能导致组织损伤 [51] 。Chemerin被描述为促炎性脂肪因子,因为它由白色脂肪组织本身释放,并且发现其循环水平与体重指数以及肥胖和胰岛素抵抗的发展密切相关 [52] 。研究表明,用活性Chemerin(即Chemerin-156)刺激MF导致促炎细胞因子如IL 1b、TNF和IL-12的表达增加。另一方面,Chemerin的替代消化产物可以降低MF中炎症介质的表达,进而诱导抗炎细胞因子如IL-10的表达 [53] 。值得注意的是,血清趋化素含量在各种炎症性疾病中明显升高,而这些疾病与多种炎症过程有关,其中炎症性肠病(IBD)、类风湿性关节炎(RA)、狼疮性肾炎、银屑病等在文献中有较好的描述 [54] [55] 。另一方面,已有确凿的证据表明,趋化素的促炎和抗炎特性与其衍生物有关,这些衍生物可被定义为与同一受体结合的短链肽。具有不同活性的衍生物的形成取决于蛋白酶,它随后导致趋化素在粒子的不同部分的分解。上述信息可能表明,趋化素衍生物可能在未来的应用炎症性疾病的治疗 [56] 。

10. Chemerin与肿瘤疾病

癌症是全世界死亡的主要原因,每年估计有大约1400万例发病病例和800万例死亡 [57] [58] 。除了其他公认的癌症风险因素(遗传学、烟草使用、电离辐射、环境暴露),肥胖现在被认为是几种恶性肿瘤的风险因素 [59] 。许多肿瘤大都在富含脂肪细胞的环境中发生发展。例如,脂肪细胞是乳腺脂肪垫的主要细胞成分,最近的研究证据表明这些细胞与癌细胞具有动态的相互作用,进而以调节肿瘤的生长和转移 [60] [61] 。肥胖的特征不仅在于脂肪的广泛扩张,而且还在于进行性代谢和内分泌功能障碍的发生发展,其特征在于包括脂质、激素、促炎细胞因子和那些称为脂肪因子的脂肪衍生信号分子的几种因子的产生的深刻改变 [62] [63] 。脂肪因子释放的量和/或谱的肥胖相关改变与代谢紊乱:如高脂血症和2型糖尿病之间有关,并且越来越多地被认为是肥胖与癌症之间关系密切。循环Chemerin水平与肥胖正相关,并且普遍认为主要外周白色脂肪储库,如皮下和内脏脂肪,是全身Chemerin水平的重要贡献者。然而,最近的研究表明,局部衍生的Chemerin,产生的肿瘤或脂肪细胞在肿瘤附近,可能有自分泌/旁分泌的影响,这是不同的激素影响的全身Chemerin。Chemerin是一种多功能分泌蛋白,在能量代谢、免疫功能和基本细胞过程(如分化、增殖和趋化性)中具有既定作用 [64] [65] 。Chemerin已被证明可介导肿瘤微环境中常见的几种表达Chemerin受体的白细胞亚群的化学吸引,包括树突状细胞、自然杀伤细胞和巨噬细胞 [66] [67] 。有证据表明,通过减少免疫细胞来使Chemerin依赖性机制向肿瘤微环境的募集来促进皮肤癌进展和肿瘤生长,且具有较高Chemerin表达的肿瘤与黑色素瘤临床结局的改善相关 [68] 。总体而言,这些结果支持对血清Chemerin浓度的癌症和阶段特异性影响。这些研究也普遍同意Chemerin作为相关癌生物标志物的潜力。

11. 总结

综上所述,Chemerin是一种具有多效性功能的小分子,通过其受体和作为抗细菌防御素起作用,它已被证明在各种炎症、代谢性疾病和肿瘤等中发挥作用 [69] 。很多的研究能够显示血清Chemerin与疾病发生率,严重程度或进展之间的相关性 [70] 。通过对Chemerin的结构特征、表达作用与高血脂、高血压、心血管疾病、糖尿病、肾脏疾病、肿瘤等发病率较高的疾病关系之间的相关具体研究,探讨其在不同疾病中的功能机制,可为预测、延缓和治疗相关疾病提供新的研究方向。

NOTES

*通讯作者。

参考文献

[1] Blüher, M. (2014) Adipokines—Removing Road Blocks to Obesity and Diabetes Therapy. Molecular Metabolism, 3, 230-240.
https://doi.org/10.1016/j.molmet.2014.01.005
[2] Blüher, M. (2012) Clinical Relevance of Adipokines. Diabetes & Metabolism Journal, 36, 317-327.
https://doi.org/10.4093/dmj.2012.36.5.317
[3] Catalan, V., Gomez-Ambrosi, J., Rodriguez, A., Salvador, J. and Fruhbeck, G. (2009) Adipokines in the Treatment of Diabetes Mellitus and Obesity. Expert Opinion on Pharmacotherapy, 10, 239-254.
https://doi.org/10.1517/14656560802618811
[4] Coban, M., Tasli, L., Turgut, S., et al. (2016) Association of Adipokines, Insulin Resistance, Hypertension and Dyslipidemia in Patients with Psoriasis Vulgaris. Annals of Dermatology, 28, 74-79.
https://doi.org/10.5021/ad.2016.28.1.74
[5] Ma, J., Niu, D.S., Wan, N.J., et al. (2015) Elevated Chemerin Levels in Synovial Fluid and Synovial Membrane from Patients with Knee Osteoarthritis. International Journal of Clinical and Experimental Pathology, 8, 13393-13398.
[6] Nagpal, S., Patel, S., Jacobe, H., DiSepio, D., Ghosn, C., Malhotra, M., et al. (1997) Tazarotene-Induced Gene 2 (TIG2), a Novel Retinoid-Responsive Gene in Skin. Journal of Investigative Dermatology, 109, 91-95.
https://doi.org/10.1111/1523-1747.ep12276660
[7] Goralski, K.B., McCarthy, T.C., Hanniman, E.A., Zabel, B.A., Butcher, E.C., Parlee, S.D., et al. (2007) Chemerin, a Novel Adipokine That Regulates Adipogenesis and Adipocyte Metabolism. Journal of Biological Chemistry, 282, 28175-28188.
https://doi.org/10.1074/jbc.M700793200
[8] Kaur, J., Adya, R., Tan, B.K., et al. (2010) Identification of Chemerin Receptor (ChemR23) in Human Endothelial Cells: Chemerin-Induced Endothelia Angiogenesis. Biochemical and Biophysical Research Communications, 391, 1762-1768.
https://doi.org/10.1016/j.bbrc.2009.12.150
[9] Zabel, B.A., Allen, S.J., Kulig, P., et al. (2005) Chemerin Activation by Serine Proteases of the Coagulation, Fibrinolytic, and Inflammatory Cascades. Journal of Biological Chemistry, 280, 34661-34666.
https://doi.org/10.1074/jbc.M504868200
[10] Wittamer, V., Franssen, J.D., Vulcano, M., et al. (2003) Specific Recruitment of Antigen-Presenting Cells by Chemerin, a Novel Processed Ligand from Human Inflammatory Fluids. Journal of Experimental Medicine, 198, 977-985.
https://doi.org/10.1084/jem.20030382
[11] Mattern, A., Zellmann, T. and Beck-Sickinger, A.G. (2014) Processing, Signaling, and Physiological Function of Chemerin. IUBMB Life, 66, 19-26.
https://doi.org/10.1002/iub.1242
[12] Fatima, S.S., Rehman, R., Baig, M. and Khan, T.A. (2014) New Roles of the Multidimensional Adipokine: Chemerin. Peptides, 62, 15-20.
https://doi.org/10.1016/j.peptides.2014.09.019
[13] Yoshimura, T. and Oppenheim, J.J. (2008) Chemerin Reveals Its Chimeric Nature. Journal of Experimental Medicine, 205, 2187-2190.
https://doi.org/10.1084/jem.20081736
[14] Dabke, K., Hendrick, G. and Devkota, S. (2019) The Gut Microbiome and Metabolic Syndrome. Journal of Clinical Investigation, 129, 4050-4057.
https://doi.org/10.1172/JCI129194
[15] 倪青. 代谢综合征病证结合诊疗指南[J/OL]. 世界中医药, 1-16.
http://kns.cnki.net/kcms/detail/11.5529.r.20230208.1603.002.html, 2023-04-11.
[16] Alberti, K.G., Eckel, R.H., Grundy, S.M., et al (2009) Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120, 1640-1645.
https://doi.org/10.1161/CIRCULATIONAHA.109.192644
[17] Bozaoglu, K., Segal, D., Shields, K.A., et al. (2009) Chemerin Is Associated with Metabolic Syndrome Phenotypes in a Mexican-American Population. The Journal of Clinical Endocrinology & Metabolism, 94, 3085-3088.
https://doi.org/10.1210/jc.2008-1833
[18] NCD Risk Factor Collaboration (NCD-RisC). (2016) Trends in Adult Bodymass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Population-Based Measurement Studies with 19∙2 Million Participants. Lancet, 387, 1377-1396.
https://doi.org/10.1016/S0140-6736(16)30054-X
[19] Chu, S.H., Lee, M.K., Ahn, K.Y., et al. (2012) Chemerin and Adiponectin Contribute Reciprocally to Metabolic Syndrome. PLOS ONE, 7, e34710.
https://doi.org/10.1371/journal.pone.0034710
[20] Jialal, I., Devaraj, S., Kaur, H., Adams-Huet, B. and Bremer, A.A. (2013) Increased Chemerin and Decreased Omentin-1 in Both Adipose Tissue and Plasma in Nascent Metabolic Syndrome. The Journal of Clinical Endocrinology & Metabolism, 98, E514-517.
https://doi.org/10.1210/jc.2012-3673
[21] Gu, P., Jiang, W., Lu, B. and Shi, Z (2014) Chemerin Is Associated with Inflammatory Markers and Metabolic Syndrome Phenotypes in Hypertension Patients. Clinical and Experimental Hypertension, 36, 326-332.
https://doi.org/10.3109/10641963.2013.827697
[22] Kunimoto, H., Kazama, K., Takai, M., Oda, M., Okada, M. and Yamawaki, H. (2015) Chemerin Promotes the Proliferation and Migration of Vascular Smooth Muscle and Increases Mouse Blood Pressure. American Journal of Physiology: Heart and Circulatory Physiology, 309, H1017-H1028.
https://doi.org/10.1152/ajpheart.00820.2014
[23] Roh, S.G., Song, S.H., Choi, K.C., et al. (2007) Chemerin—A New Adipokine That Modulates Adipogenesis via Is Own Receptor. Biochemical and Biophysical Research Communications, 362, 1013-1018.
https://doi.org/10.1016/j.bbrc.2007.08.104
[24] Jing, L., Zhang, J.Z., Zhao, L., et al. (2007) High Expression of Transforming Growth Factor β and Phosphorylation of Extracellular Signal-Regulated Protein Kinase in Vascular Xmooth Muscle Cells from Aorta and Renal Arterioles of Spontaneous Hypertension Rats. Clinical and Experimental Hypertension, 29, 107-117.
https://doi.org/10.1080/10641960701195447
[25] Shamseddeen, H., Getty, J.Z., Hamdallah, I.N. and Ali, M.R. (2011) Epidemiology and Economic Impact of Obesity and Type 2 Diabetes. Surgical Clinics of North America, 91, 1163-1172.
https://doi.org/10.1016/j.suc.2011.08.001
[26] Touys, R.M., He, G., El Mabrouk, M., et al. (2001) P38 Map Kinase Regulates Vascular Smooth Muscle Cell Collagen Synthesis by Angiotensin 11 in SHR but Not in WKY. Hypertension, 37, 574-580.
https://doi.org/10.1161/01.HYP.37.2.574
[27] Bozaoglu, K., Bolton, K., McMillan, J., Zimmet, P. and Jowett, J. (2007) Chemerin Is a Novel Adipokine Associated with Obesity and Metabolic Syndrome. Endocrinology, 148, 4687-4694.
https://doi.org/10.1210/en.2007-0175
[28] Gu, P., Jiang, W., Lu, B. and Shi, Z. (2014) Chemerin Is Associated with Inflammatory Markers and Metabolic Syndrome Phenotypes in Hypertension Patients. Clinical and Experimental Hypertension, 36, 326-332.
https://doi.org/10.3109/10641963.2013.827697
[29] Castan-Laurell, I., Dray, C., Attane, C., Duparc, T., Knauf, C. and Valet, P. (2011) Apelin, Diabetes, and Obesity. Endocrine, 40, 1-9.
https://doi.org/10.1007/s12020-011-9507-9
[30] Tunjes, A., Fasshauer, M., Kratzsch, J., et al. (2010) Adipokine Pattern in Subjects with Impaired Fasting Glucose and Impaired Glucose Tolerance in Comparison to Normal Glucose Tolerance and Diabetes. PLOS ONE, 5, e13911.
https://doi.org/10.1371/journal.pone.0013911
[31] Bobbert, T., Schwarz, F., Fischer-Rosinsky, A., Maurer, L., Mohlig, M., Pfeiffer, A.F., Mai, K. and Spranger, J. (2015) Chemerin and Prediction of Diabetes Mellitus Type 2. Clinical Endocrinology, 82, 838-843.
https://doi.org/10.1111/cen.12707
[32] Kralisch, S., Weise, S., Sommer, G., et al. (2009) Interleukin-1β Induces the Novel Adipokine Chemerin in Adipocytes in Vitro. Regulatory Peptides, 154, 102-106.
https://doi.org/10.1016/j.regpep.2009.02.010
[33] Unamuno, X., Gomez-Ambrosi, J., Rodriguez, A., Becerril, S., Fruhbeck, G. and Catalan, V. (2018) Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. European Journal of Clinical Investigation, 48, e12997.
https://doi.org/10.1111/eci.12997
[34] 路晓荣, 李剑勇. 动物机体胆固醇代谢调控机制研究进展[J]. 动物医学进展, 2019, 40(7): 101-107.
[35] Maresca, F., Di Palma, V., Bevilacqua, M., et al. (2015) Adipokines, Vascular Wall, Andcardiovascular Disease: A Focused Overview of the Role of Adipokines in the Pathophysiology of Cardiovascular Disease. Angiology, 66, 8-24.
https://doi.org/10.1177/0003319713520463
[36] Mancuso, P. (2016) The Role of Adipokines in Chronic Inflammation. ImmunoTargets and Therapy, 5, 47-56.
https://doi.org/10.2147/ITT.S73223
[37] Kammerer, A., Staab, H., Herberg, M., et al. (2018) Increased Circulating Chemerininpatients with Advanced Carotid Stenosis. BMC Cardiovascular Disorders, 18, Article No. 65.
https://doi.org/10.1186/s12872-018-0803-7
[38] Ferland, D.J. and Watts, S.W. (2015) Chemerin: A Comprehensive Review Elucidating the Need for Cardiovascular Research. Pharmacological Research, 99, 351-361.
https://doi.org/10.1016/j.phrs.2015.07.018
[39] Kaur, J., Adya, R., Tan, B.K., Chen, J. and Randeva, H.S. (2010) Identification of Chemerin Receptor (ChemR23) in Human Endothelial Cells: Chemerin-Induced Endothelial Angiogenesis. Biochemical and Biophysical Research Communications, 391, 1762-1768.
https://doi.org/10.1016/j.bbrc.2009.12.150
[40] Hart, R. and Greaves, D.R. (2010) Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5. The Journal of Immunology, 185, 3728-3739.
https://doi.org/10.4049/jimmunol.0902154
[41] Zhao, D., Bi, G., Feng, J., Huang, R. and Chen, X. (2015) Association of Serum Chemerin Levels with Acute Ischemic Stroke and Carotid Artery Atherosclerosis in a Chinese Population. Medical Science Monitor, 21, 3121-3128.
https://doi.org/10.12659/MSM.895866
[42] Inci, S., Aksan, G. and Dogan, P. (2016) Chemerin as an Independent Predictor of Cardiovascular Event Risk. Therapeutic Advances in Endocrinology and Metabolism, 7, 57-68.
https://doi.org/10.1177/2042018816629894
[43] Leiherer, A., Muendlein, A., Kinz, E., Vonbank, A., Rein, P., Fraunberger, P., et al. (2015) High Plasma Chemerin Is Associated with Renal Dysfunction and Predictive for Cardiovascular Events—Insights from Phenotype and Enotype Characterization. Vascular Pharmacology, 77, 60-68.
https://doi.org/10.1016/j.vph.2015.08.010
[44] Bozaoglu, K., Bolton, K., McMillan, J., Zimmet, P., Jowett, J., Collier, G., Walder, K. and Segal, D. (2007) Chemerin Is a Novel Adipokine Associated with Obesity and Metabolic Syndrome. Endocrinology, 148, 4687-4694.
https://doi.org/10.1210/en.2007-0175
[45] De Palma, G., Castellano, G., Del Prete, A., Sozzani, S., Fiore, N., Loverre, A., et al. (2011) The Possible Role of ChemR23/Chemerin Axis in the Recruitment of Dendritic Cells in Lupus Nephritis. Kidney International, 79, 1228-1235.
https://doi.org/10.1038/ki.2011.32
[46] Bonomini, M. and Pandolfi, A. (2015) Chemerin in Renal Dysfunction and Cardiovascular Disease. Vascular Pharmacology, 77, 28-34.
https://doi.org/10.1016/j.vph.2015.10.007
[47] Hu, W., Yu, Q., Zhang, J. and Liu, D. (2012) Rosiglitazone Ameliorates Diabetic Nephropathy by Reducing the Expression of Chemerin and ChemR23 in the Kidney of Streptozotocin-Induced Diabetic Rats. Inflammation, 35, 1287-1293.
https://doi.org/10.1007/s10753-012-9440-y
[48] Jha, V., Garcia-Garcia, G., Iseki, K., Li, Z., Naicker, S., Plattner, B., et al. (2013) Chronic Kidney Disease: Global Dimension and Perspectives. Lancet, 382, 260-272.
https://doi.org/10.1016/S0140-6736(13)60687-X
[49] Serhan, C.N. and Savill, J. (2005) Resolution of Inflammation: The Beginning Programs the End. Nature Immunology, 6, 1191-1197.
https://doi.org/10.1038/ni1276
[50] Bozaoglu, K., Curran, J.E., Stocker, C.J., Zaibi, M.S., Segal, D., Konstantopoulos, N., Morrison, S., Carless, M., Dyer, T.D., Cole, S.A., Goring, H.H., Moses, E.K., Walder, K., Cawthorne, M.A., Blangero, J. and Jowett, J.B. (2010) Chemerin, A Novel Adipokine in the Regulation of Angiogenesis. The Journal of Clinical Endocrinology & Metabolism, 95, 2476-2485.
https://doi.org/10.1210/jc.2010-0042
[51] Skrzeczyn’Ska-Moncznik, J., Stefan’Ska, A., Zabel, B.A., Kapin’Ska-Mrowiecka, M., Butcher, E.C. and Cichy, J. (2009) Chemerin and the Recruitment of NK Cells to Diseased Skin. Acta Biochimica Polonica, 56, 355-360.
https://doi.org/10.18388/abp.2009_2468
[52] Kumar, J.D., Kandola, S., Tiszlavicz, L., Reisz, Z., Dockray, G.J. and Varro, A. (2016) The Role of Chemerin and ChemR23 in Stimulating the Invasion of Squamous Oesophageal Cancer Cells. British Journal of Cancer, 114, 1152-1159.
https://doi.org/10.1038/bjc.2016.93
[53] Kaneko, K., Miyabe, Y., Takayasu, A., Fukuda, S., Miyabe, C., Ebisawa, M., Yokoyama, W., Watanabe, K., Imai, T., Muramoto, K., Terashima, Y., Sugihara, T., Matsushima, K., Miyasaka, N. and Nanki, T. (2011) Chemerin Activates Fibroblast-Like Synoviocytes in Patients with Rheumatoid Arthritis. Arthritis Research & Therapy, 13, Article No. R158.
https://doi.org/10.1186/ar3475
[54] Weigert, J., Obermeier, F., Neumeier, M., Wanninger, J., Filarsky, M., Bauer, S., Aslanidis, C., Rogler, G., Ott, C., Schaffler, A., Scholmerich, J. and Buechler, C. (2010) Circulating Levels of Chemerin and Adiponectin Are Higher in Ulcerative Colitis and Chemerin Is Elevated in Crohn’s Disease. Inflammatory Bowel Diseases, 16, 630-637.
https://doi.org/10.1002/ibd.21091
[55] Cash, J.L., Hart, R., Russ, A., Dixon, J.P., Colledge, W.H., Doran, J., Hendrick, A.G., Carlton, M.B. and Greaves, D.R. (2008) Synthetic Chemerin-Derived Peptides Suppress Inflammation through ChemR23. Journal of Experimental Medicine, 205, 767-775.
https://doi.org/10.1084/jem.20071601
[56] Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D. and Bray, F. (2015) Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359-E386.
https://doi.org/10.1002/ijc.29210
[57] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[58] Dalamaga, M., Diakopoulos, K.N. and Mantzoros, C.S. (2012) The Role of Adiponectin in Cancer: A Review of Current Evidence. Endocrine Reviews, 33, 547-594.
https://doi.org/10.1210/er.2011-1015
[59] Choi, J., Cha, Y.J. and Koo, J.S. (2018) Adipocyte Biology in Breast Cancer: From Silent Bystander to Active Facilitator. Progress in Lipid Research, 69, 11-20.
https://doi.org/10.1016/j.plipres.2017.11.002
[60] Sakurai, M., Miki, Y., Takagi, K., Suzuki, T., Ishida, T., Ohuchi, N. and Sasano, H. (2017) Interaction with Adipocyte Stromal Cells Induces Breast Cancer Malignancy via S100A7 Upregulation in Breast Cancer Microenvironment. Breast Cancer Research, 19, Article No. 70.
https://doi.org/10.1186/s13058-017-0863-0
[61] Matafome, P., Santos-Silva, D., Sena, C.M. and Seica, R. (2013) Common Mechanisms of Dysfunctional Adipose Tissue and Obesity-Related Cancers. Diabetes/Metabolism Research and Reviews, 29, 285-295.
https://doi.org/10.1002/dmrr.2395
[62] Chi, J., Wu, Z., Choi, C.H.J., Nguyen, L., Tegegne, S., Ackerman, S.E., Crane, A., Marchildon, F., Tessier-Lavigne, M. BS Cohen, P. (2018) Three-Dimensional Adipose Tissue Imaging Reveals Regional Variation in Beige Fat Biogenesis and PRDM16-Dependent Sympathetic Neurite Density. Cell Metabolism, 27, 226-236.E3.
https://doi.org/10.1016/j.cmet.2017.12.011
[63] Rourke, J.L., Dranse, H.J. and Sinal, C.J. (2013) Towards an Integrative Approach to Understanding the Role of Chemerin in Human Health and Disease. Obesity Reviews, 14, 245-262.
https://doi.org/10.1111/obr.12009
[64] Helfer, G. and Wu, Q.F. (2018) Chemerin: A Multifaceted Adipokine Involved in Metabolic Disorders. Journal of Endocrinology, 238, R79-R94.
https://doi.org/10.1530/JOE-18-0174
[65] Ghallab, N.A. and Shaker, O.G. (2017) Serum and Salivary Levels of Chemerin and MMP-9 in Oral Squamous Cell Carcinoma and Oral Premalignant Lesions. Clinical Oral Investigations, 21, 937-947.
https://doi.org/10.1007/s00784-016-1846-8
[66] Parolini, S., Santoro, A., Marcenaro, E., Luini, W., Massardi, L., Facchetti, F., Communi, D., Parmentier, M., Majorana, A., Sironi, M., et al. (2007) the Role of Chemerin in the Colocalization of NK and Dendritic Cell Subsets into Inflamed Tissues. Blood, 109, 3625-3632.
https://doi.org/10.1182/blood-2006-08-038844
[67] Pachynski, R.K., Zabel, B.A., Kohrt, H.E., Tejeda, N.M., Monnier, J., Swanson, C.D., Holzer, A.K., Gentles, A.J., Sperinde, G.V., Edalati, A., et al. (2012) the Chemoattractant Chemerin Suppresses Melanoma by Recruiting Natural Killer Cell Antitumor Defenses. Journal of Experimental Medicine, 209, 1427-1435.
https://doi.org/10.1084/jem.20112124
[68] Alkady, M.M., Abdel-Messeih, P.L. and Nosseir, N.M. (2018) Assessment of Serum Levels of the Adipocytokine Chemerin in Colorectal Cancer Patients. Journal of Medical Biochemistry, 37, 313-319.
https://doi.org/10.1515/jomb-2017-0062
[69] Qi, X., Fan, J., Zhu, J., Ling, Y., Mi, S., Chen, H., Fan, C. and Li, Y. (2020) Circulating Chemerin Level and Risk of Cancer: A Systematic Review and Meta-Analysis. Biomarkers in Medicine, 14, 919-928.
https://doi.org/10.2217/bmm-2019-0500
[70] Zhao, L., Zhao, L., Leung, L.L., Leung, L.L. and Morser, J. (2022) Chemerin Forms: Their Generation and Activity. Biomedicines, 10, Article 2018.
https://doi.org/10.3390/biomedicines10082018