突发公共卫生事件对mPIRO量表预测儿童社区获得性肺炎预后性能的影响
The Impact of Public Health Emergencies on the Prognostic Performance of the mPIRO Scale in Predicting Community-Acquired Pneumonia in Children
DOI: 10.12677/acm.2024.1441365, PDF, HTML, XML, 下载: 31  浏览: 51  科研立项经费支持
作者: 李婉玲*, 黎 科, 黄枭涵, 邓 昱#:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染免疫重庆市重点实验室,重庆
关键词: 儿童社区获得性肺炎预后改良PIRO量表Children Community-Acquired Pneumonia Prognosis mPIRO Scale
摘要: 目的:探索新型冠状病毒肺炎这一突发公共卫生事件对改良PIRO (mPIRO)量表预测社区获得性肺炎(Community-Acquired Pneumonia, CAP)患儿预后性能的影响。方法:回顾性地收集了2016年至2021年入住重庆医科大学附属儿童医院诊断为CAP患儿资料,并分为两部分,2016年至2019年为疫情前,2020年至2021年为疫情后,研究关注的不良预后为CAP患儿住院期间死亡、转入ICU或使用有创呼吸机治疗。分别计算疫情前后mPIRO量表预测CAP患儿不良预后的特异度、敏感度及受试者工作特征曲线下面积(AUC),作为量表区分性能评价标准;并疫情前后比较mPIRO量表反应的病情变化与CAP患儿实际变化情况。从以上两方面来分析突发公共卫生事件对mPIRO量表预测性能的影响。结果:疫情前后mPIRO量表预测CAP患儿不良预后的性能始终优良。具体来说,预测死亡时的AUC分别为0.87 vs. 0.84,特异度分别为73.1% vs. 74.9%,敏感度分别为86.3% vs. 78.6%;预测转入ICU的AUC分别为0.87 vs. 0.84,特异度分别为73.1% vs. 76.4%,敏感度分别为85.0% vs. 85.0%;预测使用有创呼吸机风险的AUC分别为0.88 vs. 0.88,特异度分别为75.25% vs. 76.4%,敏感度分别为85.92% vs. 85.16%。并且mPIRO量表反应的病情严重变化与实际不良预后变化是一致的。结论:mPIRO量表预测性能不被公共卫生突发事件影响,在后疫情时代,mPIRO量表仍然可作为一种可靠的决策辅助工具,指导儿科医师对有高不良预后风险的患儿采取更积极治疗措施。
Abstract: Objective: This study aims to investigate the influence of COVID-19, a public health emergency, on the prognostic performance of the Modified PIRO (mPIRO) scale in children with Community Acquired Pneumonia (CAP). Methods: We retrospectively collected data on children diagnosed with CAP admitted to the Children’s Hospital of Chongqing Medical University between 2016 and 2021. The data were divided into two groups: pre-epidemic (2016~2019) and post-epidemic (2020~2021). Poor prognosis was defined as in-hospital mortality, admitted to the ICU, and/or use of invasive mechanical ventilation in children with CAP. The specificity, sensitivity, and area under the receiver operating characteristic curve (AUC) of the mPIRO scale for predicting poor prognosis were calculated for both pre-epidemic and post-epidemic periods to evaluate the scale’s discriminatory ability. Evaluate the concordance between the changes in mPIRO score-reflected disease severity and the actual clinical severity of CAP in children before and after the COVID-19 pandemic. These two analyses were used to assess the impact of the public health emergency on the predictive performance of the mPIRO scale. Results: The mPIRO scale demonstrated consistently good performance in predicting various adverse outcomes in children with CAP before and after the epidemic. For mortality, the AUC was 0.87 vs. 0.84, specificity was 73.1% vs. 74.9%, and sensitivity was 86.3% vs. 78.6%. Similarly, the AUC for predicting ICU admission was 0.87 vs. 0.84, with specificity of 73.1% vs. 76.4% and sensitivity of 85.0% for both periods. The mPIRO scale also performed well in predicting invasive ventilator use, with AUCs of 0.88 for both periods, specificity of 75.25% vs. 76.4%, and sensitivity of 85.92% vs. 85.16%. Notably, the changes in mPIRO scores mirrored the changes in actual adverse outcomes. Conclusions: Our findings suggest that the mPIRO scale’s predictive performance remains unaffected by public health emergencies. This indicates that even in the post-pandemic era, the mPIRO scale can continue to serve as a reliable decision-making tool for pediatricians. It can effectively guide them in implementing more aggressive treatment measures for children identified as high-risk for poor outcomes.
文章引用:李婉玲, 黎科, 黄枭涵, 邓昱. 突发公共卫生事件对mPIRO量表预测儿童社区获得性肺炎预后性能的影响[J]. 临床医学进展, 2024, 14(4): 2857-2867. https://doi.org/10.12677/acm.2024.1441365

1. 引言

社区获得性肺炎(Community-Acquired Pneumonia, CAP)是全球儿童入院和死亡的主要原因之一 [1] 。儿科医生致力于降低儿童CAP死亡率。评分或量表可以帮助医务工作者及时发现有不良预后风险的CAP患儿,从而降低死亡率。

改良PIRO (mPIRO)量表是Araya [2] 等在成人版PIRO量表基础上 [3] ,利用巴西860名患儿资料开发的预测儿童CAP死亡风险的量表,预测性能优异。一个收集印度尼西亚某医院80名肺炎患儿资料的外部验证显示,mPIRO量表预测肺炎患儿死亡风险性能优异 [4] 。田颖等人利用中国北方某医院重症监护室的366名CAP患儿资料,外部验证显示mPIRO量表预测重症肺炎患儿死亡风险性能一般 [5] 。

新型冠状病毒肺炎疫情导致许多疾病预后发生改变,包括导致了心血管疾病、意外伤害、肿瘤疾病、慢性下呼吸道感染、急性下呼吸道感染等疾病死亡率降低,其中尤其以急性下呼吸道感染的死亡率下降最明显 [6] 。另有许多研究进一步显示疫情对儿童CAP病情及诊疗的影响是多方面的。一方面,疫情后CAP患儿就诊人数有明显下降,包括急诊、门诊和住院部 [7] [8] [9] 。另一方面,疫情后由于CAP而导致的重症监护室(PICU)入住率 [10] [11] [12] [13] [14] 和死亡率 [6] [15] [16] 也有所降低。同时,疫情还导致在治疗CAP患儿时不必要抗生素使用的增加,从而导致抗菌药耐药性上升 [17] 。最重要的是,疫情防控措施导致了呼吸道常见流行病原谱发生了变化 [17] 。

临床预测模型的性能可能会随着时间的推移而减弱 [18] ,尤其是当疾病诊疗环境发生变化。结合之前研究显示出的疫情对儿童CAP诊疗的影响 [19] ,疫情发生后,mPIRO量表对预测CAP患儿预测的性能令人担忧。目前,尚无研究评估疫情对上述评分或量表预测能力的变化。因此,本研究旨在通过比较疫情前后评分或量表的预测性能和预测结果的变化情况,来评估疫情对它们预测能力的影响。

2. 一研究对象及方法

2.1. 研究对象

我们回顾性地收集了2016年至2021年入住重庆医科大学附属儿童医院诊断为肺炎患儿资料。研究人群纳入标准为:1) 年龄小于18周岁;2) 满足《儿童社区获得性肺炎诊疗规范(2019年版)》 [20] 对CAP诊断定义,入院后24小时内存在急性呼吸道感染症状(如发热、咳嗽、喘息)和阳性体检结果(如呼吸增快、固定湿性啰音)或阳性放射学结果。排除标准:排除mPIRO量表中任一指标有缺失的患儿。本研究关注的不良预后为CAP患儿在住院期间发生死亡、入住ICU、使用无创通气辅助通气。本研究经重庆医科大学附属儿童医院医学伦理委员会批准(伦理批号:(2023)年伦审(研)第(277)号),并经患儿监护人签署知情同意书。

2.2. 研究量表与方法

mPIRO量表通过将CAP患儿划分为低风险(0~2分)、中度风险(3~4分)、高风险(5~6分)和极高风险(7~10分)四个风险分层,来评估不良预后风险。其中鉴于儿童血压不易测量,且血液培养结果无法及时获得本研究使用降钙素原(PCT)值升高代替菌血症,用毛细血管再充盈时间延迟代替低血压 [2] 。表1展示了mPIRO量表详细评分内容。

Table 1. The mPIRO scale

表1. mPIRO量表

将研究对象分为两部分,2016年至2019年为疫情前,2020年至2021年为疫情后,通过比较疫情前后量表的预测性能和预测结果的变化情况,来分析疫情对mPIRO量表的影响。

应用SPSS25.0进行数据分析,符合正态分布的计量资料组间比较采用独立样本t检验;非正态分布计量资料两组间比较采用Mann-Whitney U检验。计数资料用例(%)描述,组间比较采用χ2检验、Fisher确切概率法。

采用MedCalc20.218统计软件分析量表预测性能,计算此时的特异度、敏感度,并绘制每个评分或量表的受试者工作特征(Receiver Operating Characteristic Curve, ROC)曲线,计算ROC曲线下面积(Area Under the Curve at Curves, AUC)并把它作为量表区分性能评价标准,其中≥0.90表示“区分性能极好”,0.80~0.89表示“区分性能良好”,0.70~0.79表示“区分性能中等”,<0.70表示“区分性能差”。

3. 结果

3.1. 一般人口学及不良预后

纳入了2016至2021年符合诊断标准的CAP患儿共26,039名,他们的平均年龄为18.9月龄,女性有10,105 (38.8%)名,男性有15,934 (61.2%)名,15,790名(60.6%)患者发生在疫情前,10,249人(39.4%)发生于疫情之后。

疫情前后CAP患儿年龄分布有差异(表2,p < 0.05),疫情后CAP患儿平均年龄更大。而疫情前后CAP患儿性别差异不显著(表2,p > 0.05)。并且,在2020年即疫情发生后第一年,CAP患儿住院人数较2019年人数明显减少,然而到了2021年,CAP患儿开始回升。

此外,疫情前后CAP患儿发生不良预后的人数也有差异。具体来说,疫情前CAP患儿年平均死亡人数为46 (0.3%),疫情后CAP患儿年平均死亡人数为17 (0.2%),疫情后CAP患儿死亡率降低(表2,p < 0.05)。疫情前CAP患儿年平均转入ICU人数为251 (1.8%),疫情后CAP患儿年平均转入ICU人数为151 (1.5%),疫情后CAP患儿ICU转入率降低(表2,p < 0.05)。疫情前CAP患儿年平均使用有创呼吸机人数为410 (2.9%),疫情后CAP患儿年平均使用有创呼吸机人数为291 (2.7%),疫情后CAP患儿有创呼吸机使用率降低(表2,p < 0.05)。

3.2. 量表的预测性能

无论疫情前后,mPIRO量表均显示出对CAP患儿不良预后良好的预测性能(图1~3)。具体来说,

Table 2. Demographic and poor prognosis in patients included in retrospective study

表2. 一般人口统计学资料及不良预后

Figure 1. The ROC curve of the mPIRO scale predicting mortality in children with CAP before and during the COVID-19 pandemic

图1. 疫情前后mPIRO量表预测CAP患儿死亡的ROC曲线

Figure 2. ROC curve of mPIRO scale predicting ICU admission in children with CAP before and during the COVID-19 pandemic

图2. 疫情前后mPIRO量表预测CAP患儿转入ICU的ROC曲线

Figure 3. The ROC curve of mPIRO scale predicting invasive ventilation in children with CAP before and during the COVID-19 pandemic

图3. 疫情前后mPIRO量表预测CAP患儿有创通气的ROC曲线

mPIRO量表预测CAP患儿死亡风险的性能始终良好,疫情前预测死亡的AUC值为0.87,特异度为73.1,敏感度为86.3;疫情后预测死亡的AUC值为0.84,特异度为74.9,敏感度为78.6 (表3)。mPIRO量表预测CAP患儿转入ICU风险的性能始终良好,疫情前的AUC值为0.88,特异度为75.2,敏感度为85.0;疫情后预测死亡的AUC值为0.87,特异度为76.4,敏感度为85.0 (表3)。mPIRO量表预测CAP患儿使用有创呼吸机风险的性能始终良好,疫情前的AUC值为0.88,特异度为75.25,敏感度为85.92;疫情后预测死亡的AUC值为0.88,特异度为76.4,敏感度为85.16 (表3)。

Table 3. Comparison of the predictive performance of the mPIRO scale for poor prognosis before and during the COVID-19

表3. 疫情前后mPIRO量表预测不良预后性能的比较

3.3. 量表预测结果与实际不良预后比较

疫情前后mPIRO量表预测CAP患儿在不同风险分层的人数分布有差异(表4,p < 0.01)。具体来说,疫情前被评为低风险分层的年平均人数为1998 (50.6%),而疫情后的年平均人数为2631 (51.3%);疫情前被评为中风险分层的年平均人数为1459 (37.0%),而疫情后的年平均人数为1955 (38.2%);疫情前被评为高风险分层的年平均人数为459 (11.6%),而疫情后的年平均人数为520 (10.1%);疫情前被评为极高风险分层的年平均人数为32 (0.8%),而疫情后的年平均人数为19 (0.4%)。疫情后CAP患儿中低风险和中风险人数及占比增高,而高风险与极高风险人数及占比降低。

Table 4. Comparison of risk stratifications of the mPIRO scale before and during the COVID-19 pandemic

表4. 疫情前后mPIRO量表不同风险分层的比较

进一步比较mPIRO量表反应的病情严重变化与实际不良预后变化发现,疫情发生后,疫情发生后不良预后人数及占比减少,mPIRO量表评估的高风险与极高风险人数及占比也降低,两者的变化一致的。图4图5中详细展示了2016年至2021年间两者的变化趋势。

Figure 4. Illustrates the trends in the number of patients classified as high and very high risk by the mPIRO scale, as well as the trends in the number of actual deaths, ICU admissions, and invasive mechanical ventilation in CAP patients from 2016 to 2021

图4. 展示了2016年至2021年间mPIRO量表预测的高和极高风险组人数的变化趋势,以及CAP患儿实际死亡、转入ICU、使用有创呼吸机的人数变化趋势

Figure 5. Illustrates the trends in the percentages of patients classified as high and very high risk by the mPIRO scale, as well as the trends in the percentages of actual deaths, ICU admissions, and invasive mechanical ventilation in CAP patients from 2016 to 2021

图5. 展示了2016年至2021年间mPIRO量表预测的高和极高风险组人数占比的变化趋势,以及CAP患儿实际死亡、转入ICU、使用有创呼吸机的人数占比变化趋势

4. 讨论

本研究使用了2016年至2021年间26,039名CAP住院患儿资料,证明了新冠疫情对mPIRO量表预测CAP患儿不良预后的性能没有影响,mPIRO量表始终显示出对CAP患儿不良预后良好的预测性能。并且,mPIRO量表反应的疫情前后CAP患儿病情变化趋势,与CAP患儿实际变化趋势是一致的。

这可能与mPIRO量表的科学性有关。PIRO在2003年的国际重症急诊医学研讨会 [21] [22] [23] [24] 被提出,并通过前瞻性队列研究证实PIRO量表可用于预测成人重症感染和CAP死亡率 [3] 。2016年Araya [2] 等在成人版PIRO量表基础上,利用巴西860名患儿资料开发了针对儿童CAP的mPIRO量表,并且结果显示它预测性能优异(AUC = 0.94, 95% CI: 0.90~0.98)。后续有外部验证也显示出较好的预测性能。一个收集印度尼西亚某医院80名肺炎患儿资料的研究显示,mPIRO量表预测肺炎患儿死亡风险的AUC为0.92 (95% CI: 0.836~0.968) [4] 。而田颖等人利用中国北方某医院重症监护室的366名CAP患儿资料,外部验证显示mPIRO量表预测重症肺炎患儿死亡风险性能一般(AUC = 0.762, 95% CI: 0.648~0.876) [5] 。

同时,无论是本研究还是既往研究均显示,在疫情后CAP患儿的死亡率、ICU入住率、有创呼吸机使用率降低,而这与疫情后呼吸道常见流行病原体检出显著降低是一致的 [25] ,具体来说,疫情后呼吸道常见流行病原包括肺炎球菌 [26] 、呼吸道合胞病毒 [27] [28] [29] 、流感 [30] [31] [32] 、副流感 [33] [34] 、腺病毒 [35] 、鼻病毒 [36] 等病原体的检出率均有明显降低。而这种呼吸道常见病原体的流行变化,与本研究中CAP患儿病情变化趋势,以及mPIRO量表反应的病情变化趋势,三者都是一致的。疫情导致儿童CAP整体疾病负担出现变化,但并未影响个体病情变化,mPIRO量表通过评估每位CAP患儿预后风险并提供个性化指导,因此预测性能不受到影响。并且我们推测,即使面对新未知病原导致的突发公共卫生事件,mPIRO量表对CAP患儿预后的预测性能仍能不被影响。

然而本研究也有一些不足之处。首先,我们的研究队列中没有新冠患者,新冠肺炎与常见病原所致肺炎的预后可能不同 [37] ,然而未来新型冠状病毒将与人类长久共存,因此,需要进一步研究以验证mPIRO量表对新冠肺炎患儿的表现。其次,本研究是一项回顾性研究,在分析mPIRO量表预测性能时只纳入了评价指标均可获得的病例,排除了它们任一指标有缺失的患儿,这可能导致我们纳入人群有偏倚,未来需要进一步前瞻性研究验证。最后,我们研究仅纳入了重庆医科大学附属儿童医院单中心肺炎患儿资料,我们的数据不能代表全中国儿童CAP的普遍特点,未来需要多中心的数据来进一步验证。

5. 结论

公共卫生突发事件不对mPIRO量表预测CAP患儿不良预后的性能造成影响,在后疫情时代,mPIRO量表仍然可作为一种可靠的决策辅助工具,指导儿科医师对有高不良预后风险的患儿采取更积极治疗措施。

基金项目

重庆市自然科学基金(cstc2019jcyj‑msxmX0858);重庆市人力资源和社会保障局留学人员回国创业创新支持计划(cx2019068);重庆市教育委员会科学技术研究计划(KJQN202000431);重庆市科卫联合医学科研项目(渝卫发[2020]65号-2020FYYX086)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Perin, J., Mulick, A., Yeung, D., et al. (2022) Global, Regional, and National Causes of Under-5 Mortality in 2000-19: An Updated Systematic Analysis with Implications for the Sustainable Development Goals. The Lancet Child & Adolescent Health, 6, 106-115.
https://doi.org/10.1016/S2352-4642(21)00311-4
[2] Araya, S., Lovera, D., Zarate, C., et al. (2016) Application of a Prognostic Scale to Estimate the Mortality of Children Hospitalized with Community-Acquired Pneumonia. The Pediatric Infectious Disease Journal, 35, 369-373.
https://doi.org/10.1097/INF.0000000000001018
[3] Rello, J., Rodriguez, A., Lisboa, T., et al. (2009) PIRO Score for Community-Acquired Pneumonia: A New Prediction Rule for Assessment of Severity in Intensive Care Unit Patients with Community-Acquired Pneumonia. Critical Care Medicine, 37, 456-462.
https://doi.org/10.1097/CCM.0b013e318194b021
[4] Valentania, V., Somasetia, D.H., Hilmanto, D., et al. (2021) Modified PIRO (Predisposition, Insult, Response, Organ Dysfunction) Severity Score as a Predictor for Mortality of Children with Pneumonia in Hasan Sadikin Hospital, Bandung, Indonesia. Multidisciplinary Respiratory Medicine, 16, 735.
[5] 田颖. 改良PIRO量表在儿童重症社区获得性肺炎严重程度评估的意义探讨[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2020.
[6] Qi, J., Zhang, D., Zhang, X., et al. (2022) Short-and Medium-Term Impacts of Strict Anti-Contagion Policies on Non-COVID-19 Mortality in China. Nature Human Behaviour, 6, 55-63.
https://doi.org/10.1038/s41562-021-01189-3
[7] Bae, W., Choi, A., Kim, K., et al. (2022) One-Year Changes in the Pediatric Emergency Department Caused by Prolonged Coronavirus Disease 2019 Pandemic. Pediatrics International, 64, e15016.
https://doi.org/10.1111/ped.15016
[8] Hibiya, K., Iwata, H., Kinjo, T., et al. (2022) Incidence of Common Infectious Diseases in Japan during the COVID-19 Pandemic. PLOS ONE, 17, E0261332.
https://doi.org/10.1371/journal.pone.0261332
[9] Crane, M.A., Popovic, A., Panaparambil, R., et al. (2022) Reporting of Infectious Diseases in the United States during the Coronavirus Disease 2019 (COVID-19) Pandemic. Clinical Infectious Diseases, 74, 901-904.
https://doi.org/10.1093/cid/ciab529
[10] Araujo, O.R., Almeida, C.G., Lima-Setta, F., et al. (2020) The Impact of the Novel Coronavirus on Brazilian PICUs. Pediatric Critical Care Medicine, 21, 1059-1063.
https://doi.org/10.1097/PCC.0000000000002583
[11] Sperotto, F., Wolfler, A., Biban, P., et al. (2021) Unplanned and Medical Admissions to Pediatric Intensive Care Units Significantly Decreased during COVID-19 Outbreak in Northern Italy. European Journal of Pediatrics, 180, 643-648.
https://doi.org/10.1007/s00431-020-03832-z
[12] Vasquez-Hoyos, P., Diaz-Rubio, F., Monteverde-Fernandez, N., et al. (2020) Reduced PICU Respiratory Admissions during COVID-19. Archives of Disease in Childhood, 106, 808-811.
https://doi.org/10.1136/archdischild-2020-320469
[13] Wu, J.H., Wang, C.C., Lu, F.L., et al. (2023) The Impact of the Coronavirus Disease 2019 Epidemic and National Public Restrictions on Pediatric Intensive Care Units in Taiwan Region. Journal of the Formosan Medical Association, 122, 113-120.
https://doi.org/10.1016/j.jfma.2022.09.011
[14] Zee-Cheng, J.E., McCluskey, C.K., Klein, M.J., et al. (2021) Changes in Pediatric ICU Utilization and Clinical Trends during the Coronavirus Pandemic. Chest, 160, 529-537.
https://doi.org/10.1016/j.chest.2021.03.004
[15] Yamaguchi, S., Okada, A., Sunaga, S., et al. (2022) Impact of COVID-19 Pandemic on Healthcare Service Use for Non-COVID-19 Patients in Japan: Retrospective Cohort Study. BMJ Open, 12, E060390.
https://doi.org/10.1136/bmjopen-2021-060390
[16] Thsehla, E., Balusik, A., Boachie, M.K., et al. (2023) Indirect Effects of COVID-19 on Maternal and Child Health in South Africa. Global Health Action, 16, Article ID: 2153442.
https://doi.org/10.1080/16549716.2022.2153442
[17] Bernatchez, S.F. (2023) Reducing Antimicrobial Resistance by Practicing Better Infection Prevention and Control. American Journal of Infection Control, 51, 1063-1066.
https://doi.org/10.1016/j.ajic.2023.02.014
[18] Steyerberg, E.W., Moons, K.G., Van Der Windt, D.A., et al. (2013) Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLOS Medicine, 10, E1001381.
https://doi.org/10.1371/journal.pmed.1001381
[19] Garcia-Olive, I., Lopez Seguí, F., Hernandez Guillamet, G., et al. (2023) Impact of the COVID-19 Pandemic on Diagnosis of Respiratory Diseases in the Northern Metropolitan Area in Barcelona (Spain). Medicina Clínica (Barc), 160, 392-396.
https://doi.org/10.1016/j.medcli.2022.11.021
[20] 中华人民共和国国家健康委员会, 国家中医药局. 儿童社区获得性肺炎诊疗规范(2019年版) [J]. 中华临床感染病杂志, 2019, 12(1): 6-13.
[21] Angus, D.C., Burgner, D., Wunderink, R., et al. (2003) The PIRO Concept: P Is for Predisposition. Critical Care, 7, 248-251.
https://doi.org/10.1186/cc2193
[22] Gerlach, H., Dhainaut, J.F., Harbarth, S., et al. (2003) The PIRO Concept: R Is for Response. Critical Care, 7, 256-259.
https://doi.org/10.1186/cc2195
[23] Vincent, J.L., Opal, S., Torres, A., et al. (2003) The PIRO Concept: I Is for Infection. Critical Care, 7, 252-255.
https://doi.org/10.1186/cc2194
[24] Vincent, J.L., Wendon, J., Groeneveld, J., et al. (2003) The PIRO Concept: O Is for Organ Dysfunction. Critical Care, 7, 260-264.
https://doi.org/10.1186/cc2196
[25] Losier, A., Gupta, G., Caldararo, M., et al. (2023) The Impact of Coronavirus Disease 2019 on Viral, Bacterial, and Fungal Respiratory Infections. Clinics in Chest Medicine, 44, 407-423.
https://doi.org/10.1016/j.ccm.2022.11.018
[26] Chan, K.F., Ma, T.F., Ip, M.S., et al. (2021) Invasive Pneumococcal Disease, Pneumococcal Pneumonia and All-Cause Pneumonia in Hong Kong during the COVID-19 Pandemic Compared with the Preceding 5 Years: A Retrospective Observational Study. BMJ Open, 11, E055575.
https://doi.org/10.1136/bmjopen-2021-055575
[27] Bardsley, M., Morbey, R.A., Hughes, H.E., et al. (2023) Epidemiology of Respiratory Syncytial Virus in Children Younger than 5 Years in England during the COVID-19 Pandemic, Measured by Laboratory, Clinical, and Syndromic Surveillance: A Retrospective Observational Study. The Lancet Infectious Diseases, 23, 56-66.
https://doi.org/10.1016/S1473-3099(22)00525-4
[28] Kim, J.H., Roh, Y.H., Ahn, J.G., et al. (2021) Respiratory Syncytial Virus and Influenza Epidemics Disappearance in Korea during the 2020-2021 Season of COVID-19. International Journal of Infectious Diseases, 110, 29-35.
https://doi.org/10.1016/j.ijid.2021.07.005
[29] Wagatsuma, K., Koolhof, I.S., Shobugawa, Y., et al. (2021) Decreased Human Respiratory Syncytial Virus Activity during the COVID-19 Pandemic in Japan: An Ecological Time-Series Analysis. BMC Infectious Diseases, 21, Article No. 734.
https://doi.org/10.1186/s12879-021-06461-5
[30] Arellanos-Soto, D., Padilla-Rivas, G., Ramos-Jimenez, J., et al. (2021) Decline in Influenza Cases in Mexico after the Implementation of Public Health Measures for COVID-19. Scientific Reports, 11, Article No. 10730.
https://doi.org/10.1038/s41598-021-90329-w
[31] Huang, Q.S., Wood, T., Jelley, L., et al. (2021) Impact of the COVID-19 Nonpharmaceutical Interventions on Influenza and Other Respiratory Viral Infections in New Zealand. Nature Communications, 12, Article No. 1001.
https://doi.org/10.1038/s41467-021-21157-9
[32] Qi, Y., Shaman, J. and Pei, S. (2021) Quantifying the Impact of COVID-19 Nonpharmaceutical Interventions on Influenza Transmission in the United States. The Journal of Infectious Diseases, 224, 1500-1508.
https://doi.org/10.1093/infdis/jiab485
[33] Chiu, S.S., Cowling, B.J., Peiris, J.S.M., et al. (2022) Effects of Nonpharmaceutical COVID-19 Interventions on Pediatric Hospitalizations for Other Respiratory Virus Infections, Hong Kong. Emerging Infectious Diseases, 28, 62-68.
https://doi.org/10.3201/eid2801.211099
[34] El-Heneidy, A., Ware, R.S., Robson, J.M., et al. (2022) Respiratory Virus Detection during the COVID-19 Pandemic in Queensland, Australia. Australian and New Zealand Journal of Public Health, 46, 10-15.
https://doi.org/10.1111/1753-6405.13168
[35] Li, W., Zhu, Y., Lou, J., Chen, J., et al. (2021) Rotavirus and Adenovirus Infections in Children during COVID-19 Outbreak in Hangzhou, China. Translational Pediatrics, 10, 2281-2286.
https://doi.org/10.21037/tp-21-150
[36] Park, S., Michelow, I.C. and Choe, Y.J. (2021) Shifting Patterns of Respiratory Virus Activity Following Social Distancing Measures for Coronavirus Disease 2019 in South Korea. The Journal of Infectious Diseases, 224, 1900-1906.
https://doi.org/10.1093/infdis/jiab231
[37] Sturgill, J.L., Mayer, K.P., Kalema, A.G., et al. (2023) Post-Intensive Care Syndrome and Pulmonary Fibrosis in Patients Surviving ARDS-Pneumonia of COVID-19 and Non-COVID-19 Etiologies. Scientific Reports, 13, Article No. 6554.
https://doi.org/10.1038/s41598-023-32699-x