Materials Science Forum

Ni-trogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC

作者:
S DharSR WangAC AhyiT IsaacssmithST Pantelides

关键词:
Crystal Faces Field Effect Mobility Interface States (or Traps) Nitric Oxide (NO) Nitridation Oxidation Passivation Post Oxidation Annealing Post-Metallization Annealing SiO 2 /SiC Interface

摘要:
Post-oxidation anneals that introduce nitrogen at the SiO2/4H-SiC interface have been most effective in reducing the large interface trap density near the 4H-SiC conduction band-edge for (0001) Si face 4H-SiC. Herein, we report the effect of nitridation on interfaces created on the (11 20) a-face and the (0001) C-face of 4H-SiC. Significant reductions in trap density (from >1013 cm-2 eV-1 to ~ 1012 cm-2 eV-1 at EC-E ~0.1 eV) were observed for these different interfaces, indicating the presence of substantial nitrogen susceptible defects for all crystal faces. Annealing nitridated interfaces in hydrogen results in a further reduction of trap density (from ~1012 cm-2 eV-1 to ~5 x 1011 cm-2 eV-1 at EC-E ~0.1 eV). Using sequential anneals in NO and H2, maximum field effect mobilities of ~55 cm-2 V-1s-1 and ~100 cm-2 V-1s-1 have been obtained for lateral MOSFETs fabricated on the (0001) and (11 20) faces, respectively. These electronic measurements have been correlated to the interface chemical composition.

在线下载

相关文章:
在线客服:
对外合作:
联系方式:400-6379-560
投诉建议:feedback@hanspub.org
客服号

人工客服,优惠资讯,稿件咨询
公众号

科技前沿与学术知识分享