文章引用说明 更多>> (返回到该文章)

Aspelmeyer, M., Kippenberg, T.J. and Marquardt, F. (2014) Cavity optomechanics. Reviews of Modern Physics, 86, 1391.

被以下文章引用:

  • 标题: 基于石墨烯光机械系统的光学三极管和相干光学存贮Optical Transistor and Coherent Optical Storage Based on Graphene Optomechanics System

    作者: 陈华俊, 方贤文, 唐旭东, 缪广红, 朱卡的

    关键字: 石墨烯光机械, 相干光学性质, 光学三极管Grapheme Optomechanics, Coherent Optical Properties, Optical Transistor

    期刊名称: 《Applied Physics》, Vol.5 No.10, 2015-10-29

    摘要: 原子尺寸厚度的二维纳米材料——石墨烯,由于它对于研究其量子运动行为的独特性质,石墨烯也许是构成纳米机械振子的最终纳米材料。本文在红边带条件下,通过用一个强的微波泵浦场和一个弱的信号场驱动石墨烯纳米机械振子–微波腔耦合系统,理论证明了系统中的光机械诱导透明。在蓝边带条件下,通过计算信号场的透射谱,发现信号场可以实现有效地减弱和放大取决于栅极场(泵浦场)的功率强度。这样在蓝边带下石墨烯光机械系统呈现出类似一个光学三极管实现弱微波信号的放大。此外通过控制强泵浦场,石墨烯光机械系统可以实现快光和慢光效应,并且通过调节腔场与泵浦场之间的失谐能实现快光和慢光效应之间的转换。石墨烯光机械系统对于光的存储将会是一个很有希望的方案,同时对于在通讯和量子信息技术上的应用也指出了一个方向。 Graphene, atomically thin two-dimensional nanomaterials, may be considered as the ultimate nanomaterial for fabricating nanomechanical resonator due to its unique properties for studying its quantum behavior of the motion. In this work, we theoretically demonstrate optomechanically induced transparency based on the coupled graphene nanomechanical resonator-microwave cavity system with a strong microwave pump field and a weak signal field under the condition of red sideband. At the blue sideband, the signal field can be efficiently attenuated or amplified with calculating the transmission spectrum of the signal field, depending on the power of a second “gating” (pump) field which can behave as an optical transistor to amplify a weak microwave field. In addition, the graphene optomechanics can obtain the slow and fast light effect with controlling the strong pump field, and the slow and fast light effect can be switched via adjusting the detuning between the cavity field and the pump field. This scheme may be a promising candidate for light storage and pave the way for numerous applications in telecommunication and quantum information technologies.

在线客服:
对外合作:
联系方式:400-6379-560
投诉建议:feedback@hanspub.org
客服号

人工客服,优惠资讯,稿件咨询
公众号

科技前沿与学术知识分享