Mobile version of Hanspub

文章引用说明 更多>> (返回到该文章)

张帆 (2006) 地震波时频谱分析及其在爆炸识别中的应用. 硕士论文, 中国科学技术大学, 北京.

被以下文章引用:

  • 标题: 区分天然地震和人工爆炸的可视化方法Visualization Methods for Discriminating between Earthquakes and Explosions

    作者: 田野, 黄汉明, 边银菊, 赵晨杰

    关键字: 震源类型, 可视化, 对称点模式, 天然地震, 人工爆炸Seismic Source Type, Visualization, Symmetric Dot Pattern (SDP), Earthquake, Explosion

    期刊名称: 《Advances in Geosciences》, Vol.4 No.3, 2014-06-17

    摘要: 地震信号分类与天然地震与人工爆炸识别是实施全面禁止核试条约(CTBT)的必不可少的技术手段,对维护国家安全和世界和平都极其重要。自1959年来地震信号分类与天然地震与人工爆炸识别一直是地震学研究的热点和难点。本文依据科学数据可视化原则,采用新颖的具有美感的图形揭示大量数据之中所蕴涵的有用信息,试图提出一种以一个事件在多个不同位置观测台站的观测数据的综合可视化方法,绘制出可直观区分天然地震和人工爆炸的图形。可视化方法是采用图阵形式,每一事件的多个台站的各观测地震波形绘制成一个紧凑的和一体化的图形阵列;图阵中的每一个图形从一个事件某一个观测台站同一个通道的时域波形采用对称点模式绘制。共绘制了35个地震事件和27个爆炸事件的对称点模式图阵。结果表明:从这些事件的对称点模式图阵上看,地震事件和爆炸事件的区别是相当显著的。这为快速识别震源类型提供了一个很有潜力的新工具,只要地震波形已被观测得到了且可使用了,可以在少于5分钟内做出推断。 Seismic signals classification and discrimination between earthquakes and explosions are essential technology for implementation of the comprehensive nuclear test ban treaty (CTBT) and also are very important for keeping national security and world peace. Since 1959, this task has continuously been a hot spot and a hard problem of seismological researches. Based on the principles of scientific data visualization, using novel aesthetic graphics to reveal a lot of useful information contained in the data, this paper makes an attempt to put forward a kind of integrative visualization method for an event—earthquake or explosion with multi-observatories data in different locations. The method is to draw many intuitive graphics in a compact and integrative array form for each event in order to visually and conveniently distinguish earthquakes and explosions. Each picture in the graphical array for an event is drawn by an implementation of Symmetric Dot Pattern (SDP) for a seismic signal from a channel of an observatory. Totally 35 earthquake events and 27 explosion events are considered and drawn into arrays of SDP. These pictorial arrays of SDP show considerably significant differences between earthquakes and explosions. This provides a new potential measure to rapidly (can be less than 5 minutes) recognize the seismic source type— explosion or earthquake, whenever the seismic signal has been observed and prepared.