Mobile version of Hanspub

文章引用说明 更多>> (返回到该文章)

Li, X.S. and Fang, S.C. (1997) On the entropic regularization method for solving max-min problems with application. Mathematical Methods of Operations Research, 46, 119-130.

被以下文章引用:

  • 标题: 基于光滑逼近lp范数的重构信号算法A New Method for Signal Reconstruction of lp-Norm Optimization

    作者: 赵真, 陈国庆

    关键字: 压缩感知, 信号重构, 非光滑优化, 极大熵函数Compressed Sensing, Signal Reconstruction, Nonsmooth Optimization, Maximum Entropy Function

    期刊名称: 《Advances in Applied Mathematics》, Vol.3 No.3, 2014-08-29

    摘要: 随着信息科学技术的迅猛发展,信息量越来越大,对信息处理的理论技术的要求也就越高,原有的传统信息处理方法不能够完全满足人们的要求。因此对压缩感知理论的研究是十分必要的。而压缩感知理论中最核心的部分就是信号重构。本文用极大熵函数构造 范数的光滑逼近函数,进而实现信号重构,并提出了基于最小 范数问题的MEFM算法,证明了算法的收敛性。数值实验表明验证了新算法是十分可行有效的信号重构方法。 With the rapid development of information science and technology, the amount of information becomes huge. The demand of technology on information processing will be high and the original traditional information processing methods cannot fully meet the requirements of people. So the study of compression perception theory is very important. The main content of this thesis is the reconstruction algorithm, which has played an important role in the theory of the compressed sensing. In order to overcome the nonsmooth problem in norm, this paper proposed a new Maximum Entropy Function Method (MEFM) to solve the optimization problem and proved the convergence of the new algorithm. Numerical experiments demonstrated that the new algorithm is feasible and effective in signal reconstruction.