标题:
不同学习速率下NMF盲源分离算法Blind Source Separation Algorithms Based on Nonnegative Matrix Factorization Using Different Learning Rates
作者:
毛翊君, 赵知劲, 尚俊娜
关键字:
非负矩阵分解, 盲分离, 学习速率, 误差函数Non-Negative Matrix Factorization (NMF), Blind Source Separation (BSS), Learning Rates, Error Function
期刊名称:
《Hans Journal of Wireless Communications》, Vol.5 No.5, 2015-10-26
摘要:
基于非负矩阵分解(NMF)的盲源分离算法采用乘性更新规则,但如何选择学习速率以及其对算法性能影响没有详细研究。对此,本文推导给出了选择不同学习速率时各种迭代更新公式,并对各种组合进行了大量计算机仿真实验,通过比较分析发现,有效的迭代更新公式的分母必须包含误差函数信息,分子分母的项数应尽可能平衡。
The iterative multipliable update formulas are used in blind source separation algorithms based on non-negative matrix factorization (NMF). However, the methods to select the learning rates and affect algorithms’ performance remain to be researched. This paper gives a derivation of different learning rates when selecting various iterative update formulas. A lot of computer simulations about these combinations are carried, and they show that a denominator of the effective iterative update formulas must contain information of the error function. In addition, its terms of denomi-nator and numerator should be balanced.