非酒精性脂肪性肝病与肌肉减少症共同发病机制研究进展
Research Progress on Co-Pathogenesis of Non-Alcoholic Fatty Liver Disease and Sarcopenia
摘要: 随着人口老龄化的增加、生活水平的提高,肥胖、代谢综合征等问题日趋严峻,相关疾病如非酒精性脂肪性肝病、肌肉减少症等成为当下热点研究项目。目前广泛认为非酒精性脂肪性肝病与肌肉减少症之间存在共同发病机制,两病互相影响。对于非酒精性脂肪性肝病、肌肉减少症的早期发现、干预等十分重要。目前我国对于非酒精性脂肪性肝病和肌肉减少症共同机制的研究处于早期阶段,这篇综述主要讨论非酒精性脂肪性肝病和肌肉减少症的共同的发病机制。
Abstract: With the increase of population aging and the improvement of living standards, obesity, metabolic syndrome and other problems are becoming increasingly serious, and related diseases such as non-alcoholic fatty liver disease and sarcopenia have become hot research projects now. At present, it is widely believed that there is a common pathogenesis between non-alcoholic fatty liver disease and sarcopenia, the two diseases affect each other. It is very important for the early detection and intervention of non-alcoholic fatty liver disease and sarcopenia. Now, the research on the common mechanism of non-alcoholic fatty liver disease and sarcopenia is in the early stage in China. This review mainly discusses the common pathogenesis of non-alcoholic fatty liver disease and sarcopenia.
文章引用:杨国洪, 胡怀东. 非酒精性脂肪性肝病与肌肉减少症共同发病机制研究进展[J]. 临床医学进展, 2024, 14(4): 1682-1688. https://doi.org/10.12677/acm.2024.1441210

1. 引言

非酒精性脂肪性肝病(Non-Alcoholic Fatty Liver Disease, NAFLD)是一种与胰岛素抵抗(Insulin Resistance, IR)、代谢综合征(Metabolic Syndrome, MS)、肥胖等因素密切相关的肝脏疾病 [1] 。NAFLD包括单纯性非酒精性肝脂肪变、非酒精性脂肪性肝炎(Non-Alcoholic Steatohepatitis, NASH)、非酒精性脂肪性肝炎相关性肝硬化和肝细胞癌(Hepatocellular Carcinoma, HCC) [2] 。随着人民生活水平的提高,代谢综合征和肥胖等因素的全球化流行,NAFLD的发病率也呈逐年增长的趋势,目前已经取代病毒性肝炎成为世界范围内最常见的慢性肝脏疾病,其全球总体患病率约为32.4% (95% CI: 29.9~34.9),男性(39.7%)显著高于女性(25.6%) [3] ,在我国的整体患病率约为29.6%,其中男性(34.75%)亦显著高于女性(27.50%) [4] ,当NAFLD逐渐进展至重度肝硬化、肝癌阶段时,通常预后不佳死亡率较高,且由于该阶段疾病的不可逆性,相关研究预测在2030年以内NAFLD将成为肝移植的主要病因 [5] 。肌肉减少症(Sarcopenia)是指全身性肌肉力量减退、肌肉数量或质量降低以及出现机体相应临床表现,导致生活质量下降,甚至死亡的综合征,简称肌少症 [6] 。根据有无原发病因可将其分为原发性肌少症和继发性肌少症,原发性肌少症通常指年龄相关性肌少症,继发性肌少症则是各种疾病导致的肌少症 [7] 。肌少症常见于老年人、营养不良、慢性消耗性疾病、恶性肿瘤患者 [8] 。相关研究表明,与非肌少症患者相比,肌少症患者跌倒的风险和骨折风险显着增加 [9] 。随着我国人口老龄化的加剧、人民生活水平的提高,衰老、肥胖、代谢综合征等亦成为了导致疾病的重要因素 [10] ,与衰老、胰岛素抵抗等密切相关的肌少症同时也成为了威胁我国公共卫生安全的一大挑战。NAFLD和肌少症的发病率逐年增加,目前广泛认为两病之间的关系复杂且互为因果,本文旨在讨论NAFLD和肌少症的共同发病机制。

2. 非酒精性脂肪性肝病与肌肉减少症的共同发病机制

2.1. 线粒体功能障碍(Mitochondrial Dysfunction, MD)

线粒体主要负责机体能量转换,是机体内三磷酸腺苷(Adenosine Triphosphate, ATP)合成场所 [11] 。目前大量研究表明,MD在代谢性疾病的发生、发展中起到重大作用 [12] 。线粒体可以通过脂肪酸β氧化供能,在肝脏的脂质代谢功能中起到至关重要的作用。发生MD时,脂肪酸代谢异常,导致细胞中脂肪分解小于合成、脂肪在细胞内进一步积聚,最终发生细胞脂肪变性。目前相关研究表明,在NAFLD患者中存在脂肪酸β氧化和ATP合成异常 [13] 。有研究表明MD或线粒体呼吸链受抑制产生的线粒体活性氧参与炎症小体的激活过程,从而促进炎症反应 [14] ,该机制会进一步损伤肝细胞从而促进NAFLD的进展。通常肝细胞能通过选择性自噬来调控线粒体和过氧化物酶体的质量和数量而直接调节肝脏代谢 [15] 。相关研究表明,在NAFLD患者以及肥胖和高脂饮食喂养小鼠的肝脏中,自噬过程受到干扰 [16] 。同时,线粒体作为体内能量转换的场所,其正常功能活动同样是肌肉功能正常的必备条件。随着衰老、运动减少、机体代谢下降、肌肉萎缩等因素影响,会出现肌细胞内线粒体数量减少以及功能受损。MD时线粒体将增加活性氧的产生,损伤细胞DNA、减少蛋白质合成,促进细胞凋亡,其在骨骼肌中影响尤为明显 [17] 。加之线粒体自噬系统异常导致功能受损的线粒体清除失败,其在肌细胞内蓄积导致肌细胞破坏增加 [18] 。

2.2. 胰岛素抵抗(Insulin Resistance, IR)

IR会引起机体脂代谢紊乱,IR时,胰岛素会抑制甘油三酯(TG)的水解,促进周围组织摄取游离脂肪酸,导致合成脂肪作用减弱 [19] 。此时肝脏的TG作用会受到抑制,长期作用下会发生肝脏脂肪沉积,形成脂肪肝 [1] 。同时功能受损的脂肪细胞会释放大量细胞因子、激素等进行细胞肥大、增生,导致发生炎症反应以及加重IR [2] 。同时相关研究表明,炎症发生时机体产生大量瘦素 [20] 、抵抗素 [21] 、白介素-6 [22] 等炎症因子均在NAFLD和IR中发挥重要作用。在骨骼肌系统中,IR可导致血糖控制不佳及高胰岛素血症,从而引起蛋白质降解增加及合成降低,造成肌肉力量和质量的损失 [23] 。同时肌少症也会导致骨骼肌代谢下降、葡萄糖利用下降,导致高血糖和高胰岛素血症以及最终的IR [24] 。在正常人群中,骨骼肌对葡萄糖的清除率可达80%,而在肌少症人群中因骨骼肌质量下降、数量减低等导致对葡萄糖摄取减少,导致IR的发生 [25] 。同时肌少症通常有肌肉组织脂肪异位沉积,一项为期5年的关于腿部成分、力量和肌肉质量的动态变化的观察性研究显示,在所有受试者中肌肉质量均显著下降,与此形成鲜明对比的是,受试者的肌间脂肪面积均显著增加 [26] 。而目前有研究显示,肌束之间的脂肪细胞浸润增加与步态受损和IR相关 [27] 。同时发生肌少症时骨骼肌内巨噬细胞和脂肪酸之间的相互协同作用也可导致胰岛素作用受损,导致骨骼肌IR加重肌少症 [28] 。

2.3. 肠道菌群

在机体内,肠道菌群直接参与维持肠道屏障完整性、抵御外来病原体、调节宿主免疫炎症反应、协调机体消化功能、代谢等活动 [29] 。肠道菌群通过肠–肝轴与肝脏相互作用,肠道内的细菌及其代谢物可通过门静脉系统到达肝脏,又能将肝脏中的胆汁、肽类、蛋白质和抗体等物质运输至肠道,称为肠–肝轴途径,其是肠道菌群影响肝脏代谢的关键环节,肠道菌群的紊乱及代谢物的异常均可导致NAFLD的发生 [30] 。当肠道菌群各菌落之间的相对丰度组成发生改变,称为生态失调 [31] ,可导致2型糖尿病、代谢综合征和NAFLD等代谢性疾病。相关研究表明,NAFLD患者肠道中拟杆菌的增加和厚壁菌的减少与NAFLD的疾病进展有关 [32] ,NAFLD患者肠道内变形杆菌、肠杆菌、埃希氏菌等机会性致病菌的相对丰度增加,瘤胃球菌、粪球菌、普雷沃氏菌和乳酸杆菌等生理性菌群的丰度降低。此外有研究报道,肠道细菌的代谢产物如短链脂肪酸、胆汁酸、三甲胺和乙醇等可通过G蛋白偶联受体 [33] 、法尼醇X受体 [34] 、加重肝脏IR、增加脂肪组织炎症 [35] 等途径导致或加重NAFLD。在肌少症中,相关研究表明肠道菌群的差异性与衰老相关肌肉损失以及人体健康状况有关 [36] 。一项基于小鼠的动物实验显示移植健康老年人粪便菌群的小鼠肌肉质量高于移植体弱老年人粪便菌群的小鼠 [37] 。已有研究证实肠道菌群可通过影响蛋白质合成 [38] 、肠–肌轴 [39] 、线粒体代谢 [40] 等途径影响肌肉质量和功能,与老年性肌少症密切相关。

2.4. 维生素D

维生素D是一种脂溶性维生素,参与维持人体内钙磷代谢平衡、骨骼系统的生长发育,同时在减轻IR、调节免疫、抗纤维化和抗炎等方面均有重要作用 [41] 。维生素D作用于细胞核受体中的维生素D受体(Vitamin D Receptor, VDR)发挥生物作用,VDR在回肠帕内特细胞中表达水平较高。动物实验研究表明,维生素D可通过调节回肠帕内特细胞特异性α-防御素(α-Defensin, DEFA)影响肠道菌群平衡,继而达到调节代谢、影响NAFLD的发生与发展 [42] 。同时维生素D可通过VDR调节转录因子FoxP3的表达来维持调节性T细胞的活性并抑制Th17细胞炎症反应 [43] ,与单纯性脂肪肝及脂肪性肝炎的发生发展有重要关系。同时,维生素D能降低IR从而减少NAFLD的发生 [44] ,主要通过增加胰岛素靶组织中相应的受体、促进脂肪和肌肉组织中的脂肪酸分解代谢、下调炎症因子表达等途径影响胰岛素敏感性实现。维生素D同样对骨骼肌力量、肌肉状态等具有重要影响,维生素D缺乏会增加年龄相关疾病发生的风险,增加肌少症发病率 [45] 。研究表明,维生素D可以通过有丝分裂原激活的蛋白激酶信号传导通路调节C2C12骨骼肌肌管的增殖和分化,也可以调节肌肉中钙离子通道状态,抑制FOXO1基因表达,并影响泛素–蛋白酶体系统,而泛素–蛋白酶体系统在骨骼肌肌肉减少、萎缩中发挥重要作用 [46] 。同时,维生素D可通过VDR调节蛋白质合成、II型肌纤维数量和体积进而影响骨骼肌质量、数量以及功能,在肌少症的发生和发展中起重要作用。

3. 结语与展望

目前相关研究表明,非酒精性脂肪性肝病与肌肉减少症有许多共同的病理生理机制。随着人口老龄化趋势日渐明显、人们生活水平逐渐提高,肥胖、代谢综合征等相关疾病发生率逐年增加,代谢相关性疾病如NAFLD、肌少症已逐步成为威胁公共健康的重要因素。而目前关于NAFLD和肌少症之间的共同发病机制仍不完全明确,已有的研究表明如线粒体功能障碍、胰岛素抵抗、肠道菌群、维生素D、炎症因子、营养与代谢状态等因素均在两者的发病过程中起重要作用。由于目前针对NAFLD、肌少症的治疗药物有限,在临床治疗中仍以运动、饮食干预措施为主,但由于NAFLD、肌少症等的发生与代谢状态、年龄等相关,特别是在老年、糖代谢、脂代谢异常患者中,运动、饮食干预措施实施难度较高。为此仍需进一步对两病相关发病机制进行深入研究,且目前相关研究仍以动物实验为主,深入学习NAFLD、肌少症的病因、临床表现等或有助于进一步理解疾病临床机制、预后转归,为后续深入研究其病理生理机制创造条件,进一步为临床诊断、患者管理、药物干预等手段提供依据。

NOTES

*通讯作者。

参考文献

[1] Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., Ouatu, A. and Floria, M. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196.
https://doi.org/10.1155/2020/3920196
[2] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association (2018) Guidelines of Prevention and Treatment for Nonalcoholic Fatty Liver Disease: A 2018 Update. Journal of Clinical Hepatology, 34, 947-957.
[3] Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., Swain, M.G., Congly, S.E., Kaplan, G.G. and Shaheen, A.A. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861.
https://doi.org/10.1016/S2468-1253(22)00165-0
[4] Le, M.H., Le, D.M., Baez, T.C., Wu, Y., Ito, T., Lee, E.Y., Lee, K., Stave, C.D., Henry, L., Barnett, S.D., Cheung, R. and Nguyen, M.H. (2023) Global Incidence of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of 63 Studies and 1,201,807 Persons. Journal of Hepatology, 79, 287-295.
https://doi.org/10.1016/j.jhep.2023.03.040
[5] Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64.
https://doi.org/10.1016/j.jhep.2014.12.012
[6] Bunchorntavakul, C. and Reddy, K.R. (2020) Review Article: Malnutrition/Sarcopenia and Frailty in Patients with Cirrhosis. Alimentary Pharmacology & Therapeutics, 51, 64-77.
https://doi.org/10.1111/apt.15571
[7] Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., BruyÈRe, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., Schneider, S.M., Sieber, C.C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M. and Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[8] Papadopoulou, S.K. (2020) Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients, 12, Article No. 1293.
https://doi.org/10.3390/nu12051293
[9] Yeung, S.S.Y., Reijnierse, E.M., Pham, V.K., Trappenburg, M.C., Lim, W.K., Meskers, C.G.M. and Maier, A.B. (2019) Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 10, 485-500.
https://doi.org/10.1002/jcsm.12411
[10] Kornicka, K., Szłapka-Kosarzewska, J., Śmieszek, A. and Marycz, K. (2019) 5-Azacytydine and Resveratrol Reverse Senescence and Ageing of Adipose Stem Cells via Modulation of Mitochondrial Dynamics and Autophagy. Journal of Cellular and Molecular Medicine, 23, 237-259.
https://doi.org/10.1111/jcmm.13914
[11] Prasun, P. (2020) Mitochondrial Dysfunction in Metabolic Syndrome. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866, Article ID: 165838.
https://doi.org/10.1016/j.bbadis.2020.165838
[12] Eslam, M., Sanyal, A.J., George, J. and International Consensus Panel (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.E1.
https://doi.org/10.1053/j.gastro.2019.11.312
[13] Park, H.S., Song, J.W., Park, J.H., Lim, B.K., Moon, O.S., Son, H.Y., Lee, J.H., Gao, B., Won, Y.S. and Kwon, H.J. (2021) TXNIP/VDUP1 Attenuates Steatohepatitis via Autophagy and Fatty Acid Oxidation. Autophagy, 17, 2549-2564.
https://doi.org/10.1080/15548627.2020.1834711
[14] Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225.
https://doi.org/10.1038/nature09663
[15] Ueno, T. and Komatsu, M. (2017) Autophagy in the Liver: Functions in Health and Disease. Nature Reviews. Gastroenterology & Hepatology, 14, 170-184.
https://doi.org/10.1038/nrgastro.2016.185
[16] Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., Proikas-Cezanne, T. and Reggiori, F. (2022) The Ménage à Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72.
https://doi.org/10.1080/15548627.2021.1895658
[17] Gonzalez, A., Simon, F., Achiardi, O., Vilos, C., Cabrera, D. and Cabello-Verrugio, C. (2021) The Critical Role of Oxidative Stress in Sarcopenic Obesity. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 4493817.
https://doi.org/10.1155/2021/4493817
[18] Vance, J.E. and Tasseva, G. (2013) Formation and Function of Phosphatidylserine and Phosphatidylethanolamine in Mammalian Cells. Biochimica et Biophysica Acta, 1831, 543-554.
https://doi.org/10.1016/j.bbalip.2012.08.016
[19] Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A.M. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology & Hepatology, 2021, Article ID: 6613827.
https://doi.org/10.1155/2021/6613827
[20] Lonardo, A., Nascimbeni, F., Maurantonio, M., Marrazzo, A., Rinaldi, L. and Adinolfi, L.E. (2017) Nonalcoholic Fatty Liver Disease: Evolving Paradigms. World Journal of Gastroenterology, 23, 6571-6592.
https://doi.org/10.3748/wjg.v23.i36.6571
[21] Lee, D.Y., Park, J.K., Hur, K.Y. and Um, S.H. (2018) Association between Nonalcoholic Fatty Liver Disease and Bone Mineral Density in Postmenopausal Women. Climacteric: The Journal of the International Menopause Society, 21, 498-501.
https://doi.org/10.1080/13697137.2018.1481380
[22] Xue, L., He, J., Gao, N., Lu, X., Li, M., Wu, X., Liu, Z., Jin, Y., Liu, J., Xu, J. and Geng, Y. (2017) Probiotics May Delay the Progression of Nonalcoholic Fatty Liver Disease by Restoring the Gut Microbiota Structure and Improving Intestinal Endotoxemia. Scientific Reports, 7, Article No. 45176.
https://doi.org/10.1038/srep45176
[23] Russell, S.T., Rajani, S., Dhadda, R.S. and Tisdale, M.J. (2009) Mechanism of Induction of Muscle Protein Loss by Hyperglycaemia. Experimental Cell Research, 315, 16-25.
https://doi.org/10.1016/j.yexcr.2008.10.002
[24] Pereira, S., Marliss, E.B., Morais, J.A., Chevalier, S. and Gougeon, R. (2008) Insulin Resistance of Protein Metabolism in Type 2 Diabetes. Diabetes, 57, 56-63.
https://doi.org/10.2337/db07-0887
[25] Thiebaud, D., Jacot, E., DeFronzo, R.A., Maeder, E., Jequier, E. and Felber, J.P. (1982) The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man. Diabetes, 31, 957-963.
https://doi.org/10.2337/diacare.31.11.957
[26] Santanasto, A.J., Goodpaster, B.H., Kritchevsky, S.B., Miljkovic, I., Satterfield, S., Schwartz, A.V., Cummings, S.R., Boudreau, R.M., Harris, T.B. and Newman, A.B. (2017) Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72, 513-519.
https://doi.org/10.1093/gerona/glw163
[27] Scott, D., Trbojevic, T., Skinner, E., Clark, R.A., Levinger, P., Haines, T.P., Sanders, K.M. and Ebeling, P.R. (2015) Associations of Calf Inter-and Intra-Muscular Adipose Tissue with Cardiometabolic Health and Physical Function in Community-Dwelling Older Adults. Journal of Musculoskeletal & Neuronal Interactions, 15, 350-357.
[28] Fink, L.N., Costford, S.R., Lee, Y.S., Jensen, T.E., Bilan, P.J., Oberbach, A., Blüher, M., Olefsky, J.M., Sams, A. and Klip, A. (2014) Pro-Inflammatory Macrophages Increase in Skeletal Muscle of High Fat-Fed Mice and Correlate with Metabolic Risk Markers in Humans. Obesity (Silver Spring, Md.), 22, 747-757.
https://doi.org/10.1002/oby.20615
[29] Thursby, E. and Juge, N. (2017) Introduction to the Human Gut Microbiota. The Biochemical Journal, 474, 1823-1836.
https://doi.org/10.1042/BCJ20160510
[30] Hu, H., Lin, A., Kong, M., Yao, X., Yin, M., Xia, H., Ma, J. and Liu, H. (2020) Intestinal Microbiome and NAFLD: Molecular Insights and Therapeutic Perspectives. Journal of Gastroenterology, 55, 142-158.
https://doi.org/10.1007/s00535-019-01649-8
[31] Quesada-Vázquez, S., Bone, C., Saha, S., Triguero, I., Colom-Pellicer, M., Aragonès, G., Hildebrand, F., Del Bas, J.M., Caimari, A., Beraza, N. and Escoté, X. (2022) Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors’ Combination. International Journal of Molecular Sciences, 23, Article No. 13675.
https://doi.org/10.3390/ijms232213675
[32] Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., Chen, Y. and Li, L. (2016) Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-Alcoholic Fatty Liver Disease. Scientific Reports, 6, Article No. 32002.
https://doi.org/10.1038/srep32002
[33] Rau, M., Rehman, A., Dittrich, M., Groen, A.K., Hermanns, H.M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P. and Geier, A. (2018) Fecal SCFAs and SCFA-Producing Bacteria in Gut Microbiome of Human NAFLD as a Putative Link to Systemic T-Cell Activation and Advanced Disease. United European Gastroenterology Journal, 6, 1496-1507.
https://doi.org/10.1177/2050640618804444
[34] Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G. and Gonzalez, F.J. (2000) Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell, 102, 731-744.
https://doi.org/10.1016/S0092-8674(00)00062-3
[35] Chu, H., Duan, Y., Yang, L. and Schnabl, B. (2019) Small Metabolites, Possible Big Changes: A Microbiota-Centered View of Non-Alcoholic Fatty Liver Disease. Gut, 68, 359-370.
https://doi.org/10.1136/gutjnl-2018-316307
[36] Picca, A., Ponziani, F.R., Calvani, R., Marini, F., Biancolillo, A., Coelho-Junior, H.J., Gervasoni, J., Primiano, A., Putignani, L., Del Chierico, F., Reddel, S., Gasbarrini, A., Landi, F., Bernabei, R. and Marzetti, E. (2019) Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients, 12, Article No. 65.
https://doi.org/10.3390/nu12010065
[37] Fielding, R.A., Reeves, A.R., Jasuja, R., Liu, C., Barrett, B.B. and Lustgarten, M.S. (2019) Muscle Strength Is Increased in Mice That Are Colonized with Microbiota from High-Functioning Older Adults. Experimental Gerontology, 127, Article ID: 110722.
https://doi.org/10.1016/j.exger.2019.110722
[38] Ni Lochlainn, M., Bowyer, R.C.E. and Steves, C.J. (2018) Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients, 10, Article No. 929.
https://doi.org/10.3390/nu10070929
[39] Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M. and Meschi, T. (2017) Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients, 9, Article No. 1303.
https://doi.org/10.3390/nu9121303
[40] Sligar, J., DeBruin, D.A., Saner, N.J., Philp, A.M. and Philp, A. (2022) The Importance of Mitochondrial Quality Control for Maintaining Skeletal Muscle Function across Health Span. American Journal of Physiology. Cell Physiology, 322, C461-C467.
https://doi.org/10.1152/ajpcell.00388.2021
[41] Allen, A.M., Therneau, T.M., Larson, J.J., Coward, A., Somers, V.K. and Kamath, P.S. (2018) Nonalcoholic Fatty Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year-Community Study. Hepatology (Baltimore, Md.), 67, 1726-1736.
https://doi.org/10.1002/hep.29546
[42] Su, D., Nie, Y., Zhu, A., Chen, Z., Wu, P., Zhang, L., Luo, M., Sun, Q., Cai, L., Lai, Y., Xiao, Z., Duan, Z., Zheng, S., Wu, G., Hu, R., Tsukamoto, H., Lugea, A., Liu, Z., Pandol, S.J. and Han, Y.P. (2016) Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 7, Article No. 498.
https://doi.org/10.3389/fphys.2016.00498
[43] Holick, M.F. (2011) Vitamin D: A D-Lightful Solution for Health. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 59, 872-880.
https://doi.org/10.2310/JIM.0b013e318214ea2d
[44] Barchetta, I., Del Ben, M., Angelico, F., Di Martino, M., Fraioli, A., La Torre, G., Saulle, R., Perri, L., Morini, S., Tiberti, C., Bertoccini, L., Cimini, F.A., Panimolle, F., Catalano, C., Baroni, M.G. and Cavallo, M.G. (2016) No Effects of Oral Vitamin D Supplementation on Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. BMC Medicine, 14, Article No. 92.
https://doi.org/10.1186/s12916-016-0638-y
[45] Berridge, M.J. (2017) Vitamin D Deficiency Accelerates Ageing and Age-Related Diseases: A Novel Hypothesis. The Journal of Physiology, 595, 6825-6836.
https://doi.org/10.1113/JP274887
[46] Kamwa, V. and Hassan-Smith, Z.K. (2019) The Inter-Relationship between Marginal Vitamin D Deficiency and Muscle. Current Opinion in Endocrinology, Diabetes, and Obesity, 26, 322-328.
https://doi.org/10.1097/MED.0000000000000504