神经调控在肝脏疾病的研究进展
Research Progress on Neuromodulation in Liver Diseases
DOI: 10.12677/acm.2024.1441230, PDF, HTML, XML, 下载: 37  浏览: 83 
作者: 任天星*, 陈 标, 黄昆鹏, 梅博升, 张博文, 张进祥#:华中科技大学同济医学院附属协和医院,湖北 武汉
关键词: 神经调控肝脏疾病神经递质Neuromodulation Liver Disease Neurotransmitters
摘要: 肝脏神经系统通过释放各种神经递质直接参与肝脏正常生理功能的调节,对维持机体稳态至关重要,同时也参与了肝脏疾病的发生与发展过程,本文主要综述神经调控在肝脏疾病发生发展中的作用,旨在深化对于神经调控在肝脏生理功能中的作用的理解,探讨在肝脏疾病中的作用机制,为肝脏疾病的预防和治疗提供理论支持和新思路。
Abstract: The hepatic nervous system is directly involved in the regulation of normal liver physiological functions through the release of various neurotransmitters, which is crucial to the maintenance of body homeostasis, and is also involved in the process of the occurrence and development of liver diseases. This paper focuses on the review of the role of neuromodulation in the occurrence and development of liver diseases, with the aim of deepening the understanding of the role of neuromodulation in the physiological function of the liver, exploring the mechanism of the role of neuromodulation in liver diseases, and providing theoretical support and new ideas for the prevention and treatment of liver diseases.
文章引用:任天星, 陈标, 黄昆鹏, 梅博升, 张博文, 张进祥. 神经调控在肝脏疾病的研究进展[J]. 临床医学进展, 2024, 14(4): 1819-1827. https://doi.org/10.12677/acm.2024.1441230

1. 引言

肝脏作为人体重要的代谢器官,承担着机体多种生命维持功能,因此保持肝脏健康对于整个生理系统的平衡至关重要。肝脏疾病,包括乙型肝炎和丙型肝炎、酒精性肝病、非酒精性脂肪性肝病、肝衰竭和肝细胞癌,是全球疾病和死亡的主要原因之一。肝病每年造成200多万人死亡,占全球死亡总数的4% [1] 。在我国,随着疾病预防和诊疗技术的提高,病毒性肝炎的发病率正在下降,但由于代谢相关危险因素的增加和人口老龄化,酒精性肝病和非酒精性脂肪肝病等代谢性肝病患病率逐渐上升,在中国的患病率从2003年的17%上升到2012年的22.4%,最终会导致更多终末期肝病的产生 [2] 。在过去几十年,关于肝脏疾病的基础研究已取得显著进展,尽管如此,相应的高水平转化研究仍有待增强,且针对不同肝脏疾病的有效治疗药物的开发还面临挑战。随着对神经系统的深入研究,肝脏神经系统在维持和恢复肝脏稳态的重要性被进一步证明,更好地了解肝脏神经支配在肝脏疾病中的作用可能会发现针对肝脏疾病的新治疗方法。在本文中,我们将首先概述肝脏神经系统在肝脏的支配和功能,然后深入探讨神经调控在脂肪肝、肝纤维化和其他肝脏疾病中的作用。最后,我们将讨论当前研究的局限性,并提出未来研究的方向,以期为神经调控在肝脏健康和疾病中的应用提供新的思路。

2. 肝脏的神经系统支配和功能

肝脏由交感神经、副交感神经和感觉神经支配。支配肝脏的交感神经起源于腹腔和肠系膜上神经节中的神经元,这些神经元由位于脊髓中间外侧柱(T7~T12)的节前神经元支配 [3] 。肝脏的副交感神经来源于背侧脑干的迷走神经背核中的节前神经元 [4] 。交感神经、副交感神经和感觉神经在肝门入肝,并沿着肝动脉和门静脉分别形成前神经丛和后神经丛。前神经丛主要由来自腹腔神经丛左侧和迷走神经右腹支的神经纤维构成,后神经丛则主要来源于腹腔神经丛的右侧 [5] [6] 。肝脏神经的分布在不同哺乳动物之间存在一定的差异,在大鼠等物种中神经纤维局限于门静脉区域,而人类肝脏中的神经纤维会深入肝小叶中,并终止于肝细胞 [4] 。肝脏中的神经元可产生多种神经递质,包括去甲肾上腺素、乙酰胆碱、神经肽Y、血管活性肠肽、降钙素基因相关肽、物质P、胰高血糖素样、生长抑素、神经降压素和血清素,可以调控不同的生理代谢过程,肝脏的细胞中也有相对应的神经递质受体,对神经信号做出反应 [7] [8] 。

肝脏是人体最大的代谢器官,肝脏的自主神经系统发挥重要调控作用,涉及血管、胆道、脂质和葡萄糖代谢、以及渗透压调节。

2.1. 调节血管系统

肝脏血流的维持需要自主神经系统的调控,肝脏神经可调控血流量的改变,电刺激肝神经可导致肝血流量减少,并且可被α肾上腺素能受体阻滞剂所抑制,这是由α肾上腺素能受体依赖的肝动脉收缩介导 [9] 。在机体失血期间,交感神经系统激活导致肝总血容量减少,从而维持循环血流量 [10] 。肝脏接受来自肝动脉的富氧血液和门静脉的富营养血液双重血液供应,且含有丰富的血窦,肝血窦是一种特殊的毛细血管,可使肝细胞与血流之间进行物质交换,交感神经释放去甲肾上腺素可导致肝窦收缩,而副交感神经释放乙酰胆碱可使肝窦舒张,两者协同调控控制肝窦状态,促进肝细胞与血液间的物质交换 [11] 。

2.2. 调节胆道系统

胆管细胞主要分布在肝脏胆管系统,对胆汁的生成和调控起到重要作用,肝脏神经也可调控胆管细胞的活动从而参与胆汁的合成、分泌。

机体摄入食物后,副交感神经的神经递质乙酰胆碱,通过激活胆管细胞中Ca2+依赖性蛋白激酶C (protein kinase C, PKC)增强促胰液素调控胆管细胞Cl/ HCO 3 交换速率,进而促进碳酸氢盐和胆汁的分泌,去除副交感神经可破坏促胰液素诱导的胆管分泌 [12] 。此外,胆管细胞也表达肾上腺素能受体,可接受来自交感神经的调控,去甲肾上腺素刺激胆管细胞上的肾上腺素受体α1A (α1A adrenoreceptor, ADRA1A)通过Ca2+-PKC依赖性激活环磷酸腺苷(cyclic Adenosine Monophosphate, cAMP),进而与促胰液素相协同,促进胆管细胞的分泌 [10] [13] 。

2.3. 调节脂质代谢

肝脏可调控脂质代谢,根据机体的代谢需求和营养状况,调控脂质的合成、分解和运输,以维持机体脂质代谢平衡 [14] 。交感神经可以提高肝细胞内肉碱棕榈酰转移酶(carnitine palmitoyltransferase1, CPT)的基因表达水平,减少肝细胞分泌脂质 [15] 。去神经支配后,可降低肝细胞内CPT的表达,导致甘油三酯,胆固醇水平升高 [16] 。另有研究表明,肝脏去除神经可通过增加极低密度脂蛋白的分泌来提高血清甘油三酯和胆固醇的水平,肝脏内的交感神经可通过调控肝细胞摄取葡萄糖来抑制肝脏释放极低密度脂蛋白 [17] 。此外,肝脏交感神经还可调控酮体代谢,去甲肾上腺素的释放可促进酮体的产生以及在肝脏内的释放 [14] 。

2.4. 调节葡萄糖代谢

肝脏是调节葡萄糖代谢的重要器官。肝脏可以通过调控糖异生和糖原储存分解来精确调控葡萄糖代谢,满足机体的需求并维持血糖水平的稳定,肝脏在葡萄糖代谢中的作用对机体能量的平衡和生理功能至关重要 [18] 。交感神经可作用于肝细胞,刺激糖原分解来增加肝脏葡萄糖的输出,导致血糖升高;而副交感神经可促进糖原合成从而降低血糖水平 [14] [18] 。在肝脏去除神经后,会影响肝脏对葡萄糖摄取的协同调节,导致进食后肝脏对葡萄糖净摄取率下降。肝移植患者的自主神经系统没有重新建立,与对照组相比,移植肝脏的交感神经活性较低 [19] 。研究发现,肝移植患者在低血糖期间血液中胰岛素和胰高血糖素水平会升高,证明肝脏自主神经对葡萄糖代谢调节有重要作用 [20] 。交感神经释放的神经肽也可影响肝脏葡萄糖代谢。神经肽可促进肝脏摄取葡萄糖,并抵消去甲肾上腺素刺激肝细胞对葡萄糖的输出作用 [21] 。此外,在胰高血糖素存在时,交感神经刺激可增强葡萄糖的释放,同时减少胰高血糖素介导的乳酸摄取的增加效应 [14] 。

2.5. 调节渗透压的改变

机体不断地进行水分的摄取和排泄,但仍可保持细胞外液渗透压的平衡和稳定。肝脏可以检测到早期血浆渗透压的变化,并通过神经传入系统,触发机体对渗透压稳态的控制。

肝脏去神经支配的肝移植患者,对于渗透压反应能力下降,导致血浆渗透压升高 [22] 。肝脏交感神经可调控肝细胞水合作用和渗透压平衡 [22] 。血浆内渗透压的变化可激活肝神经上特定的离子通道受体,在这些受体中,瞬时受体通道蛋白香草酸4 (transient receptor potential 4, TRPV4)可感受渗透压的变化从而激活渗透敏感电流传递信号 [23] 。当肝脏神经检测到门静脉渗透压降低时,可通过背根神经节的传入刺激激活传出交感神经纤维以诱导升压反射,进而调节渗透压 [24] 。

3. 神经调控在肝脏疾病中的作用

3.1. 交感神经与肝脏疾病神经调控

在不同的物种中,交感神经均存在于肝脏的关键解剖部位,包括门静脉,肝动脉和胆管附近,交感神经释放的主要神经递质是去甲肾上腺素,可作用于不同的肾上腺素受体 [25] ,脑卒中发生时,小鼠肝脏的自然杀伤T (natural killer T cell, NKT)细胞会活化,并产生细胞因子和趋化因子,同时在肝窦中运动速度减慢,数量减少,这是由交感神经分泌的去甲肾上腺素来调控,阻断交感神经的支配可以保护脑卒中,同时也可显著降低脑卒中后的感染风险 [26] 。NKT细胞可通过调节局部细胞因子的产生来调节肝损伤,交感神经分泌的去甲肾上腺素还可通过抑制凋亡来恢复肝脏NKT细胞数量,从而改善肝脏炎症水平 [27] 。在肝部分切除时,交感神经可诱导NKT细胞异常增多,发挥调控肝脏再生的免疫监视功能,增加对再生肝细胞的细胞毒性,使用β受体阻滞剂普萘洛尔可以减弱该效应。这些研究表明,交感神经通过释放去甲肾上腺素调控NKT细胞影响脑卒中的保护和肝损伤修复的过程 [28] 。

在致病因素刺激下,肝脏卵圆细胞可促进肝脏再生,抑制交感神经会显著促进卵圆细胞的数量,卵圆细胞可以修复受损肝脏组织,从而促进肝损伤恢复和肝再生 [29] 。此外,在肝再生中,良性心理应激也可刺激交感神经分泌去甲肾上腺素,进而调控1型先天性淋巴细胞(innate lymphoid cells, ILCs)分泌白细胞介素-22 (interleukin-22, IL-22),促进肝脏再生组织的修复 [30] 。6-羟多巴胺(6-hydroxydopamine,6-OHDA)是多巴胺的羟基化衍生物,可被多巴胺活性转运蛋白吸收进入胞内,通过产生活性氧和引起线粒体功能障碍导致多巴胺能神经元死亡,常用于化学性去除外周交感神经 [31] 。研究报道,CCl4诱导被广泛用作肝脏毒性的动物模型,其可导致氧化应激、细胞坏死和炎症反应,使用6-OHDA化学性去除交感神经可显著改善肝细胞坏死和脂质过氧化,并减少趋化因子、肿瘤坏死因子的表达 [32] 。同时,在肝脏毒性CCl4模型中,去除交感神经可促进肝细胞凋亡并减少其增殖,体外实验中,去甲肾上腺素处理后可显著降低转化生长因子β (transforming growth factor β, TGF-β)诱导的肝细胞凋亡,证明交感神经分泌的去甲肾上腺素具有抗凋亡作用 [33] 。肝硬化是肝纤维化进展到更为严重的阶段,其特征是肝脏组织大量的纤维组织沉积和结构性改变。交感神经末梢和肝星状细胞存在空间上联系,交感神经可释放去甲肾上腺素作用于肝星状细胞抑制其参与纤维化的进程,并可调控肝卵圆细胞的聚集,改善肝脏损伤 [34] 。此外,交感神经还可以调控肝卵圆细胞,激活Wnt/β-catenin信号通路,减轻对乙酰氨基酚诱导的药物性肝损伤 [35] 。

交感神经在肝细胞癌的发生发展中有重要作用,肝细胞癌常发生于慢性炎症后的肝硬化患者,并且交感神经系统在晚期肝硬化患者处于兴奋状态。研究发现高密度的交感神经纤维和Kupffer细胞的α1-肾上腺素能受体高表达与肝细胞癌的不良预后相关。交感神经可通过分泌去甲肾上腺素激活Kupffer细胞的肾上腺素能受体,增强了Kupffer细胞的白细胞介素-6 (interleukin-6, IL-6)和TGF-β的分泌,进而维持炎症微环境,促进肝癌的发生发展 [36] 。在非酒精性脂肪肝病中,肝交感神经活跃是肝脂肪变性的诱因,去除交感神经后,可改善肝脏甘油三酯积累途径,包括游离脂肪酸摄取和新脂肪生成 [37] 。在非酒精性脂肪性肝病合并肝硬化患者肝脏中,活化的肝星状细胞(hepatic stellate cells, HSC)表达功能性α/β肾上腺素受体和神经肽Y (neuropeptide Y, NPY)受体,可接受来自交感神经的去甲肾上腺素调节,导致肝脏增殖能力增强和细胞外基质蛋白的产生,使纤维化程度加重 [38] 。而在胆管结扎模型中,交感神经可调控胆管细胞中cAMP的升高,抑制胆管细胞凋亡并促进胆管细胞增殖,发挥保护作用 [39] 。

综上所述,交感神经在不同肝脏疾病模型中的各个进程中发挥不同的作用,如在脑卒中保护、肝脏损伤后修复与再生、肝纤维化调控及肝细胞癌发展等方面通过精细调节去甲肾上腺素的释放和作用机制,展现了其在肝脏健康与病理状态中的复杂而关键性的影响,为开发新的治疗策略提供了重要的理论基础和潜在的靶点。

3.2. 副交感神经与肝脏神经调控

与肝脏交感神经系统相比,副交感神经可能对肝损伤有保护作用。在非酒精性脂肪性肝病中,通过化学遗传调节,刺激和抑制副交感神经可影响NASH的脂肪堆积和炎症水平,具体表现为激活副交感神经可显著减少肝脏脂滴面积,炎症细胞在肝脏组织的浸润程度 [40] [41] 。体内和体外研究结果表明,肝迷走神经胆碱能信号传导在NASH发病过程中通过调控Kupffer细胞上的α-7型烟碱乙酰胆碱受体(α-7nicotinic acetylcholine receptors, α7nAChR)减弱核因子κB (nuclear factor kappa-B, NF-κB)信号的激活,抑制了炎症反应,从而缓解肝脏损伤 [42] 。同时其他研究者发现在高脂肪饮食诱导的肥胖和胰岛素抵抗小鼠中,副交感神经可以释放乙酰胆碱作用于Kupffer细胞上α7nAchR抑制IL-6的分泌和转录激活因子3 (signal transducer and activator of transcription 3, STAT3)的信号传导,减少炎症因子的表达 [43] 。这些研究结果表明作用于副交感神经调控NASH进程是很有希望的临床靶点。在凋亡相关因子(Factor-related Apoptosis, FAS)诱导的急性重型肝炎中,副交感神经同样也可以通过调控巨噬细胞上α7nAChR受体,从而减少活性氧的产生减轻Fas诱导的肝细胞凋亡,切除副交感神经可以导致胱天蛋白酶3 (Caspase-3, CASP3)活性升高,诱导凋亡;而使用α7nAChR受体的激动剂可减轻肝脏损伤 [44] 。在脂多糖(lipopolysaccharides, LPS)诱导的暴发型肝炎中,副交感神经释放乙酰胆碱作用于Kupffer细胞表面的α7AchR,抑制促炎因子TNF-α和IL-6的产生,进而减轻炎症损伤 [45] 。同样在对乙酰氨基酚诱导的药物性肝损伤模型中,使用新斯的明可通过抑制乙酰胆碱的降解增加乙酰胆碱的浓度,提高小鼠存活率,显著改善APAP诱导的肝衰竭 [46] 。

在D-半乳糖诱导的肝脏损伤模型中,肝脏副交感神经释放乙酰胆碱激活肝卵圆细胞上的毒蕈碱乙酰胆碱受体(muscarinic acetylcholine receptors M-Achr) 3型,促进其增殖。结合临床数据分析,这对肝移植患者的预后有重要意义 [47] 。副交感神经可释放乙酰胆碱促进Kupffer细胞的吞噬功能,同时提高胆碱乙酰转移酶(choline acetyltransferase, ChAT)在Kupffer细胞中的表达,使得乙酰胆碱合成增加,副交感神经受到胆碱能信号刺激后又可增强Kupffer细胞的吞噬功能 [48] 。

副交感神经系统(迷走神经)通过刺激Kupffer细胞释放IL-6,继而激活肝细胞中的信号转导及转录激活蛋白3(signal transducer and activator of transcription 3, STAT3),有助于肝切除术后的肝再生 [49] 。其他研究报道也证实副交感神经信号介导的肝巨噬细胞中IL-6的产生可上调肝细胞叉头盒M1 (forkhead box M1, FoxM1),促进肝脏再生 [50] 。在肝硬化疾病中,乙酰胆碱显著促进肝星状细胞的增殖并诱导胶原基因的表达,促进肝硬化疾病的进程 [51] 。

因此,在各种肝病模型中,副交感神经系统的作用不可小觑。它通过调控神经递质乙酰胆碱的释放,以及乙酰胆碱对肝脏特定受体的激活作用,能有效减轻炎症反应。这种调节不仅有助于抑制病理过程中的过度免疫反应,还能促进受损细胞的修复和再生,为肝脏提供一种保护机制。特别是在肝纤维化或急性肝损伤后,副交感神经系统的介入可能对减缓疾病进程和改善肝功能具有显著效果。

3.3. 感觉神经与肝脏神经调控

感觉神经广泛分布于肝动脉、门静脉,以及肝小叶内的结缔组织中,可暴露于各种炎症介质,肝脏本身可清除来自肠道的细菌和其他异物。感觉神经纤维上表达炎症介质的受体和离子通道,如瞬时受体电位连接蛋白1 (transient receptor potential ankyrin 1, TRPA1)和瞬时受体电位香草样蛋白1 (transient receptor potential 1, TRPV1),在被炎症介质、病原体等刺激激活后,感觉神经元上的动作电位触发钙离子内流,导致P物质(substance P, SP)和降钙素基因相关肽(calcitonin gene-related peptide, CGRP)的释放,发挥调控作用 [52] 。

研究报道,在胆汁淤积性疾病中,SP可能是肝纤维化和细胞衰老的重要调节因子,SP可作用于速激肽受体神经激肽-1 (neurokinin 1 receptor, NK1R),导致HSC的激活和纤维化基因表达增强,增加肝脏纤维化。体内和体外实验证明,敲除或者阻断NK1R可减少胆管细胞的衰老并增加HSC的衰老,从而逆转胆汁淤积性肝损伤后的肝纤维化 [53] 。此外SP还可以作用于肝窦内皮细胞(Liver sinusoidal endothelial cell, LSEC),在非损伤条件下,可提高细胞活力和增殖能力;在TNF-α诱导的炎症刺激下,SP可提高LSEC细胞活力,促进一氧化氮和肝细胞生长因子(hepatocyte growth factor, HGF)的分泌,从而促进肝细胞修复再生 [54] 。另一项研究表明,SP通过mTOR/Akt/PI3K和ERK磷酸化调节肝细胞存活和增殖,从而促进肝脏再生,SP的肝脏再生促进作用为降低肝衰竭的风险提供了可能性 [55] 。此外,在胆汁淤积性肝损伤中,SP还可促进Treg细胞数量增加,降低血液循环中的TNF-α水平,进而改善炎症环境,可减缓肝纤维化的进程 [56] 。

研究报道,在自身免疫性肝炎中,敲除受体活性修饰蛋白1受体(receptor activity modifying protein 1 Gene, RAMP1)的小鼠可表现为肝损伤加重,死亡率增加,通过体内和体外实验证明感觉神经释放的CGRP通过调节Kupffer细胞的RAMP1受体抑制促炎细胞因子的产生和释放,减轻了炎症细胞对肝脏组织的浸润,改善免疫介导的肝脏损伤 [56] 。此外,RAMP1还可介导肝脏修复和再生功能,在肝部分切除术中,肝脏中的CGRP表达增加 [57] ,感觉神经可通过CGRP-RAMP1轴激活转录调控因子Yes蛋白(yes-associated protein, YAP)和转录共激活子PDZ结合基序(transcriptional coactivator with PDZ-binding motif, TAZ),促进急慢性肝损伤后的肝再生,RAMP1敲除小鼠表现出肝细胞增殖能力下降和再生延迟 [58] 。

综上所述,感觉神经通过释放神经肽如SP和CGRP,激活NK1R和RAMP1受体,调节多种细胞功能,在肝脏疾病的多个阶段中扮演关键角色。这包括在胆汁淤积性疾病、自身免疫性肝炎、肝脏修复与再生中的作用,通过调控纤维化、促进细胞存活和增殖,以及调节免疫反应,展现了其在肝脏健康维持和病理过程中的重要性。这些发现不仅深化了我们对肝脏疾病机制的理解,也为设计针对性治疗策略提供了重要的理论依据和潜在的治疗靶点。

4. 结论

肝脏神经系统功能的改变与非酒精性脂肪肝、肝硬化、肝癌,以及肝损伤等疾病的发生和发展密切联系,肝脏神经活性的增加和相应递质的释放增多及其受体的改变会影响肝脏疾病的进展和预后。使用物理或者化学手段阻断或减弱肝脏神经的活性对于肝脏疾病有重要意义,虽然肝脏神经系统在肝脏疾病发生发展中的作用机制研究越来越多,但仍有许多尚未解决的问题,例如神经递质对肝脏各类细胞的不同作用机制尚未阐明,如何将神经调节肝脏疾病的分子转化应用于临床也仍需探索,肝脏神经末梢和不同细胞存在空间位置的紧密联系如何对肝脏不同生理病理状态作出反应和调节。随着技术的进步,如光遗传学、病毒工具、多组学测序和成像技术的应用对揭示肝脏内神经支配模式有巨大的作用,这些领域的进一步研究将有助于开发针对神经调控影响不同肝脏疾病治疗方法,并更好地探究与疾病相关的肝脏神经支配如何调节机体的病理生理过程。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Devarbhavi, H., Asrani, S.K., Arab, J.P., et al. (2023) Global Burden of Liver Disease: 2023 Update. Journal of Hepatology, 79, 516-537.
https://doi.org/10.1016/j.jhep.2023.03.017
[2] Xiao, J., Wang, F., Wong, N.K., et al. (2019) Global Liver Disease Burdens and Research Trends: Analysis from a Chinese Perspective. Journal of Hepatology, 71, 212-221.
https://doi.org/10.1016/j.jhep.2019.03.004
[3] Mizuno, K. and Ueno, Y. (2017) Autonomic Nervous System and the Liver. Hepatology Research, 47, 160-165.
https://doi.org/10.1111/hepr.12760
[4] Yi, C.X., La Fleur, S.E., Fliers, E., et al. (2010) The Role of the Autonomic Nervous Liver Innervation in the Control of Energy Metabolism. Biochimica et Biophysica Acta, 1802, 416-431.
https://doi.org/10.1016/j.bbadis.2010.01.006
[5] Koike, N., Tadokoro, T., Ueno, Y., et al. (2022) Development of the Nervous System in Mouse Liver. World Journal of Hepatology, 14, 386-399.
https://doi.org/10.4254/wjh.v14.i2.386
[6] Jensen, K.J., Alpini, G. and Glaser, S. (2013) Hepatic Nervous System and Neurobiology of the Liver. Comprehensive Physiology, 3, 655-665.
https://doi.org/10.1002/cphy.c120018
[7] Zhang, B., Vogelzang, A. and Fagarasan, S. (2022) Secreted Immune Metabolites That Mediate Immune Cell Communication and Function. Trends in Immunology, 43, 990-1005.
https://doi.org/10.1016/j.it.2022.10.006
[8] Akiyoshi, H., Gonda, T., Terada, T. (1998) A Comparative Histochemical and Immunohistochemical Study of Aminergic, Cholinergic and Peptidergic Innervation in Rat, Hamster, Guinea Pig, Dog and Human Livers. Liver, 18, 352-359.
https://doi.org/10.1111/j.1600-0676.1998.tb00817.x
[9] Lelou, E., Corlu, A., Nesseler, N., et al. (2022) The Role of Catecholamines in Pathophysiological Liver Processes. Cells, 11, Article 1021.
https://doi.org/10.3390/cells11061021
[10] Tanimizu, N., Ichinohe, N. and Mitaka, T. (2023) β-Adrenergic Receptor Agonist Promotes Ductular Expansion during 3, 5-Diethoxycarbonyl-1, 4-Dihydrocollidine-Induced Chronic Liver Injury. Scientific Reports, 13, Article No. 7084.
https://doi.org/10.1038/s41598-023-33882-w
[11] Tanaka, M., Jeong, J., Thomas, C., et al. (2023) The Sympathetic Nervous System Promotes Hepatic Lymphangiogenesis, Which Is Protective Against Liver Fibrosis. The American Journal of Pathology, 193, 2182-2202.
https://doi.org/10.1016/j.ajpath.2023.08.004
[12] Wilde, A.B., Greverath, L.M., Steinhagen, L.M., et al. (2022) Evaluation of Inhibitory Antibodies against the Muscarinic Acetylcholine Receptor Type 3 in Patients with Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Journal of Clinical Medicine, 11, Article 681.
https://doi.org/10.3390/jcm11030681
[13] Yeo, X.Y., Tan, L.Y., Chae, W.R., et al. (2023) Liver’s Influence on the Brain through the Action of Bile Acids. Frontiers in Neuroscience, 17, Article 1123967.
https://doi.org/10.3389/fnins.2023.1123967
[14] Ren, W., Hua, M., Cao, F., et al. (2024) The Sympathetic-Immune Milieu in Metabolic Health and Diseases: Insights from Pancreas, Liver, Intestine, and Adipose Tissues. Advanced Science, 11, e2306128.
https://doi.org/10.1002/advs.202306128
[15] Kanno, N., LeSage, G., Glaser, S., et al. (2001) Regulation of Cholangiocyte Bicarbonate Secretion. American Journal of Physiology Gastrointestinal and Liver Physiology, 281, G612-G625.
https://doi.org/10.1152/ajpgi.2001.281.3.G612
[16] Barke, R.A., Brady, P.S. and Brady, L.J. (1993) The Regulation of Mitochondrial Fatty Acid Oxidation and Hepatic Gene Expression by Catecholamine. The Journal of Surgical Research, 54, 95-101.
https://doi.org/10.1006/jsre.1993.1014
[17] Li, X. and Wang, H. (2020) Multiple Organs Involved in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Cell & Bioscience, 10, Article No. 140.
https://doi.org/10.1186/s13578-020-00507-y
[18] Lin, E.E., Scott-Solomon, E. and Kuruvilla, R. (2021) Peripheral Innervation in the Regulation of Glucose Homeostasis. Trends in Neurosciences, 44, 189-202.
https://doi.org/10.1016/j.tins.2020.10.015
[19] Huang, Y., He, Z., Manyande, A., et al. (2022) Nerve Regeneration in Transplanted Organs and Tracer Imaging Studies: A Review. Frontiers in Bioengineering and Biotechnology, 10, Article 966138.
https://doi.org/10.3389/fbioe.2022.966138
[20] Scherer, T., Sakamoto, K. and Buettner, C. (2021) Brain Insulin Signalling in Metabolic Homeostasis and Disease. Nature Reviews Endocrinology, 17, 468-483.
https://doi.org/10.1038/s41574-021-00498-x
[21] Mirzadeh, Z., Faber, C.L. and Schwartz, M.W. (2022) Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes? Annual Review of Pharmacology and Toxicology, 62, 55-84.
https://doi.org/10.1146/annurev-pharmtox-052220-010446
[22] Lechner, S.G., Markworth, S., Poole, K., et al. (2011) The Molecular and Cellular Identity of Peripheral Osmoreceptors. Neuron, 69, 332-344.
https://doi.org/10.1016/j.neuron.2010.12.028
[23] Häussinger, D. (2004) Neural Control of Hepatic Osmolytes and Parenchymal Cell Hydration. The Anatomical Record, 280A, 893-900.
https://doi.org/10.1002/ar.a.20094
[24] Oyewunmi, O.A., Lei, L.Y., Laurin, J.K.H., et al. (2023) Hemodynamic Effects of the Osmopressor Response: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 12, e029645.
https://doi.org/10.1161/JAHA.122.029645
[25] García-Prieto, J., Villena-Gutiérrez, R., Gómez, M., et al. (2017) Neutrophil Stunning by Metoprolol Reduces Infarct Size. Nature Communications, 8, Article No. 14780.
https://doi.org/10.1038/ncomms14780
[26] Wong, C.H., Jenne, C.N., Lee, W.Y., et al. (2011) Functional Innervation of Hepatic INKT Cells Is Immunosuppressive Following Stroke. Science, 334, 101-105.
https://doi.org/10.1126/science.1210301
[27] Gu, X., Chu, Q., Ma, X., et al. (2022) New Insights into INKT Cells and Their Roles in Liver Diseases. Frontiers in Immunology, 13, Article 1035950.
https://doi.org/10.3389/fimmu.2022.1035950
[28] Wang, X.Z., Xue, R.F., Zhang, S.Y., et al. (2018) Activation of Natural Killer T Cells Contributes to Triptolide-Induced Liver Injury in Mice. Acta Pharmacologica Sinica, 39, 1847-1854.
https://doi.org/10.1038/s41401-018-0084-9
[29] Oben, J.A., Roskams, T., Yang, S., et al. (2003) Sympathetic Nervous System Inhibition Increases Hepatic Progenitors and Reduces Liver Injury. Hepatology, 38, 664-673.
https://doi.org/10.1053/jhep.2003.50371
[30] Liu, T., Li, J., Li, Q., et al. (2023) Environmental Eustress Promotes Liver Regeneration through the Sympathetic Regulation of Type 1 Innate Lymphoid Cells to Increase IL-22 in Mice. Hepatology, 78, 136-149.
https://doi.org/10.1097/HEP.0000000000000239
[31] Blum, D., Torch, S., Lambeng, N., et al. (2001) Molecular Pathways Involved in the Neurotoxicity of 6-OHDA, Dopamine and MPTP: Contribution to the Apoptotic Theory in Parkinson’s Disease. Progress in Neurobiology, 65, 135-172.
https://doi.org/10.1016/S0301-0082(01)00003-X
[32] Lin, J.C., Peng, Y.J., Wang, S.Y., et al. (2015) Role of the Sympathetic Nervous System in Carbon Tetrachloride-Induced Hepatotoxicity and Systemic Inflammation. PLOS ONE, 10, e0121365.
https://doi.org/10.1371/journal.pone.0121365
[33] Medina Pizaño, M.Y., Loera Arias, M.J., Montes De Oca Luna, R., et al. (2023) Neuroimmunomodulation of Adrenoblockers during Liver Cirrhosis: Modulation of Hepatic Stellate Cell Activity. Annals of Medicine, 55, 543-557.
https://doi.org/10.1080/07853890.2022.2164047
[34] Xue, J., Jiang, T., Humaerhan, J., et al. (2024) Impact of Liver Sympathetic Nervous System on Liver Fibrosis and Regeneration after Bile Duct Ligation in Rats. Journal of Molecular Neuroscience, 74, Article No. 4.
https://doi.org/10.1007/s12031-023-02176-1
[35] Soeda, J., Mouralidarane, A., Ray, S., et al. (2014) The β-Adrenoceptor Agonist Isoproterenol Rescues Acetaminophen-Injured Livers through Increasing Progenitor Numbers by Wnt in Mice. Hepatology, 60, 1023-1034.
https://doi.org/10.1002/hep.27266
[36] Huan, H.B., Wen, X.D., Chen, X.J., et al. (2017) Sympathetic Nervous System Promotes Hepatocarcinogenesis by Modulating Inflammation through Activation of α1-Adrenergic Receptors of Kupffer Cells. Brain, Behavior, and Immunity, 59, 118-134.
https://doi.org/10.1016/j.bbi.2016.08.016
[37] Hurr, C., Simonyan, H., Morgan, D.A., et al. (2019) Liver Sympathetic Denervation Reverses Obesity-Induced Hepatic Steatosis. The Journal of Physiology, 597, 4565-4580.
https://doi.org/10.1113/JP277994
[38] Sigala, B., McKee, C., Soeda, J., et al. (2013) Sympathetic Nervous System Catecholamines and Neuropeptide Y Neurotransmitters Are Upregulated in Human NAFLD and Modulate the Fibrogenic Function of Hepatic Stellate Cells. PLOS ONE, 8, e72928.
https://doi.org/10.1371/journal.pone.0072928
[39] Hall, C., Sato, K., Wu, N., et al. (2017) Regulators of Cholangiocyte Proliferation. Gene Expression, 17, 155-171.
https://doi.org/10.3727/105221616X692568
[40] Satapathy, S.K., Ochani, M., Dancho, M., et al. (2011) Galantamine Alleviates Inflammation and Other Obesity-Asso-ciated Complications in High-Fat Diet-Fed Mice. Molecular Medicine (Cambridge, Mass), 17, 599-606.
https://doi.org/10.2119/molmed.2011.00083
[41] Hur, M.H., Song, W., Cheon, D.H., et al. (2023) Chemogenetic Stimulation of the Parasympathetic Nervous System Lowers Hepatic Lipid Accumulation and Inflammation in a Nonalcoholic Steatohepatitis Mouse Model. Life Sciences, 321, Article ID: 121533.
https://doi.org/10.1016/j.lfs.2023.121533
[42] Nishio, T., Taura, K., Iwaisako, K., et al. (2017) Hepatic Vagus Nerve Regulates Kupffer Cell Activation via α7 Nicotinic Acetylcholine Receptor in Nonalcoholic Steatohepatitis. Journal of Gastroenterology, 52, 965-976.
https://doi.org/10.1007/s00535-016-1304-z
[43] Kimura, K., Tanida, M., Nagata, N., et al. (2016) Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic α 7 Acetylcholine Receptor. Cell Reports, 14, 2362-2374.
https://doi.org/10.1016/j.celrep.2016.02.032
[44] Hiramoto, T., Chida, Y., Sonoda, J., et al. (2008) The Hepatic Vagus Nerve Attenuates Fas-Induced Apoptosis in the Mouse Liver via α7 Nicotinic Acetylcholine Receptor. Gastroenterology, 134, 2122-2131.
https://doi.org/10.1053/j.gastro.2008.03.005
[45] Li, Y., Xu, Z., Yu, Y., et al. (2014) The Vagus Nerve Attenuates Fulminant Hepatitis by Activating the Src Kinase in Kuppfer Cells. Scandinavian Journal of Immunology, 79, 105-112.
https://doi.org/10.1111/sji.12141
[46] Steinebrunner, N., Mogler, C., Vittas, S., et al. (2014) Pharmacologic Cholinesterase Inhibition Improves Survival in Acetaminophen-Induced Acute Liver Failure in the Mouse. BMC Gastroenterology, 14, Article No. 148.
https://doi.org/10.1186/1471-230X-14-148
[47] Cassiman, D., Libbrecht, L., Sinelli, N., et al. (2002) The Vagal Nerve Stimulates Activation of the Hepatic Progenitor Cell Compartment via Muscarinic Acetylcholine Receptor Type 3. The American Journal of Pathology, 161, 521-430.
https://doi.org/10.1016/S0002-9440(10)64208-3
[48] Fonseca, R.C., Bassi, G.S., Brito, C.C., et al. (2019) Vagus Nerve Regulates the Phagocytic and Secretory Activity of Resident Macrophages in the Liver. Brain, Behavior, and Immunity, 81, 444-454.
https://doi.org/10.1016/j.bbi.2019.06.041
[49] Ikeda, O., Ozaki, M., Murata, S., et al. (2009) Autonomic Regulation of Liver Regeneration after Partial Hepatectomy in Mice. The Journal of Surgical Research, 152, 218-223.
https://doi.org/10.1016/j.jss.2008.02.059
[50] Izumi, T., Imai, J., Yamamoto, J., et al. (2018) Vagus-Macrophage-Hepatocyte Link Promotes Post-Injury Liver Regeneration and Whole-Body Survival through Hepatic FoxM1 Activation. Nature Communications, 9, Article No. 5300.
https://doi.org/10.1038/s41467-018-07747-0
[51] Amir, M., Yu, M., He, P., et al. (2020) Hepatic Autonomic Nervous System and Neurotrophic Factors Regulate the Pathogenesis and Progression of Non-Alcoholic Fatty Liver Disease. Frontiers in Medicine, 7, Article 62.
https://doi.org/10.3389/fmed.2020.00062
[52] Inoue, T., Ito, Y., Nishizawa, N., et al. (2018) RAMP1 in Kupffer Cells Is a Critical Regulator in Immune-Mediated Hepatitis. PLOS ONE, 13, e0200432.
https://doi.org/10.1371/journal.pone.0200432
[53] Wan, Y., Meng, F., Wu, N., et al. (2017) Substance P Increases Liver Fibrosis by Differential Changes in Senescence of Cholangiocytes and Hepatic Stellate Cells. Hepatology, 66, 528-541.
https://doi.org/10.1002/hep.29138
[54] Piao, J., Jeong, J., Jung, J., et al. (2019) Substance P Promotes Liver Sinusoidal Endothelium-Mediated Hepatic Regeneration by NO/HGF Regulation. Journal of Interferon & Cytokine Research, 39, 147-154.
https://doi.org/10.1089/jir.2018.0111
[55] Ko, H., Kim, Y.I. and Ahn, H.J. (2022) Effects of Substance P for Liver Regeneration in Rat Hepatectomy Models: A Preliminary Experimental Animal Study. Annals of Transplantation, 27, e934801.
https://doi.org/10.12659/AOT.934801
[56] Kim, S. and Hong, H.S. (2021) Substance-P Prevents the Cholestatic Liver Injury by Regulating Inflammatory Responses. Peptides, 137, Article ID: 170494.
https://doi.org/10.1016/j.peptides.2021.170494
[57] Mizutani, T., Yokoyama, Y., Kokuryo, T., et al. (2013) Calcitonin Gene-Related Peptide Regulates the Early Phase of Liver Regeneration. The Journal of Surgical Research, 183, 138-145.
https://doi.org/10.1016/j.jss.2012.11.028
[58] Laschinger, M., Wang, Y., Holzmann, G., et al. (2020) The CGRP Receptor Component RAMP1 Links Sensory Innervation with YAP Activity in the Regenerating Liver. FASEB Journal, 34, 8125-8138.
https://doi.org/10.1096/fj.201903200R