圆锥角膜的诊断进展
Progress in the Diagnosis of Keratoconus
DOI: 10.12677/ACM.2021.116406, PDF, HTML, XML, 下载: 401  浏览: 1,065 
作者: 叶玲余, 刘小勇*:暨南大学附属第一医院眼科,广东 广州
关键词: 圆锥角膜诊断角膜地形图角膜生物力学分析仪基因诊断Keratoconus Diagnosis Corneal Topography Corvis ST Genetic Diagnosis
摘要: 圆锥角膜是一种严重危及视力的角膜扩张性疾病,完成期具有典型的临床表现,容易诊断。但早期缺乏典型的表现,临床上诊断困难,容易误诊。近年来,角膜屈光手术在我国广泛开展,术前对圆锥角膜的筛查极为重要,现将圆锥角膜的检测进展作一综述。
Abstract: Keratoconus is a kind of corneal ectatic disease which seriously endangers the vision. It is easy to diagnose because of its typical clinical manifestation in the completion stage. However, the early lack of typical manifestations makes clinical diagnosis difficult and easy to miss. In recent years, corneal refractive surgery is widely carried out in China. It is very important to screen keratoconus before surgery. The diagnosis equipment and technology of keratoconus are reviewed.
文章引用:叶玲余, 刘小勇. 圆锥角膜的诊断进展[J]. 临床医学进展, 2021, 11(6): 2801-2806. https://doi.org/10.12677/ACM.2021.116406

1. 引言

圆锥角膜(Keratoconus, KC)是一类最常见的角膜扩张性病变,表现为角膜前后表面渐进性陡峭、角膜中央或旁中央厚度逐渐变薄或从周边到最薄处的变化率增加 [1]。圆锥角膜在全世界的发病率约为0.05%~0.23%,目前圆锥角膜的发病原因还不明确,可能与家族遗传、变态反应、种族因素、揉眼、Leber先天性黑蒙、马凡氏综合征等有关 [1] [2]。我国的圆锥角膜分为潜伏期、初发期、完成期及瘢痕期 [1]。完成期圆锥角膜具有典型体征如Fleischer环、Vogt线、Munson征等,在临床上容易识别,但早期的圆锥角膜视力正常且缺乏典型临床表现不易被发现。随着新技术、新方法的出现,眼科医生能更早发现圆锥角膜。现将临床上关于圆锥角膜的检测方法进行综述。

2. 角膜地形图

角膜地形图是一种经典的非侵入性检测技术,用于定性和定量地分析角膜的形态特征 [3]。角膜地形图诊断标准参照Rabinowitz角膜前表面中央屈光力 > 46.5 D;角膜中心下方3 mm处与上方3 mm处屈光力差值 > 1.26 D;双眼角膜中央前表面屈光力差值 > 0.92 D [4]。但是早期圆锥角膜可能是角膜后表面发生扩张,角膜地形图仅基于Placido盘产生定量数据来生成彩色编码图来表征角膜的前表面,无法客观识别早期角膜后表面病理变化。

3. Orbscan眼前节分析仪

Orbscan眼前节分析仪利用狭缝光束和背散射光测量角膜表面上不同点相对于参考面的高度。从角膜缘到角膜缘在两个方向扫描,在0.7 s内获得20张狭缝图像(共40张图像)。同时,眼球运动也会被记录,并在计算中加以考虑。Orbscan能够对角膜前表面和后表面,虹膜前表面和前房成像 [5]。Orbscan初步诊断圆锥角膜依据有:角膜最薄点 ≤ 460 μm,双眼相差 ≥ 20 μm;角膜前表面高度 ≥ 0.025 mm,角膜后表面高度 ≥ 0.05 mm [6]。

Mohammad Reza Jafarinasab等 [7] 提出可区分临床圆锥角膜和正常人的角膜后表面高度临界点为51 μm,其敏感度和特异度分别为89.23%、98.58%,角膜前表面高度临界点为19 μm,其敏感度和特异度分别为93.850%、97.16%。Mohammad Aghazadeh Amiri等 [5] 提出在中央混浊的圆锥角膜中,采用扫描狭缝技术,光线可能无法均匀穿透角膜全层。在严重圆锥角膜患者中,角膜通常出现混浊、瘢痕,因此用Orbscan测量角膜厚度的可靠性较差。

4. Pentacam眼前节分析仪

Pentacam作为一种非接触性旋转Scheimpflug成像仪器,利用光学进行断层扫描、三维测量,从而完成眼前节的三维重建。Pentacam系统给出的前表面高度小于+12 μm被认为正常,+12~+15 μm为可疑,大于+15 μm提示圆锥角膜可能;后表面高度小于+17 μm认为正常,+17~+22 μm为可疑,大于+22 μm提示圆锥角膜。

Abdolreza Medghalchi等 [8] 提出圆锥角膜的严重程度与角膜后表面高度呈显著正相关(P < 0.001和r > 0.625),受试者工作特征曲线(ROC曲线)分析显示,前后角膜表面高度差对圆锥角膜分期的曲线下面积(Area Under Curve, AUC)值最好,前后角膜表面高度差是通过Scheimpflug系统的Belin/Ambrỏsio推算出来的。Scheimpflug角膜显像获得的角膜后表面高度和前后角膜表面高度差数据对圆锥角膜的严重程度分级有一定的参考价值。安阳等 [9] 提出亚临床圆锥角膜组与正常散光组的后表面高度的诊断界值、灵敏度和特异度分别是13.57 μm、75.1%、92.6%。当后表面高度大于13.57 μm为可疑圆锥角膜进展期。

5. 前段光学相干断层扫描(AS-OCT)

前段光学相干断层扫描(AS-OCT)是非接触性测量并重建组织二维或三维图像的仪器。能够不受角膜通明度影响,测量出角膜的厚度值,并计算出角膜前、后表面的角膜曲率。

Mohamad El Wardani等 [10] 提出高度轴偏心指数(Index of Height Decentration, IHD)大于0.014 μm被视为临界值,大于0.016 μm则为病理值,IHD是在半径为3 mm的圆环上计算的,代表垂直方向的高度偏轴度。Koji Kitazawa等 [11] 提出角膜中心5 mm直径区域的角膜前后表面积之比(anterior-posterior ratio of corneal surface area, As/Ps)与角膜厚度最薄处呈显著正相关(r = 0.879, P < 0.001),反映角膜后表面突出先于角膜前表面的变化,证实了早期圆锥角膜的角膜后表面比角膜前表面扩大的观点。Kazutaka Kamiya等 [12] 提出即使角膜不透明,AS-OCT也可以精确地确定角膜前后表面的曲率和高度。对于识别正常眼和圆锥角膜眼的准确率为0.991。同时,识别圆锥角膜分期的准确率为0.874。AS-OCT同其他技术相比其优点在于可以在角膜瘢痕的情况下测量角膜厚度以及能够测量瘢痕深度。

6. 眼反映分析仪(Ocular Response Analyzer, ORA)

ORA是采用双向压平技术来测量角膜生物力学的仪器,通过射向角膜中央3 mm的一束喷射气流先后将角膜压平2次,2次角膜压平的压力差为角膜滞后性(Corneal Hysteresis, CH),反映了角膜吸收能量的能力,在此基础上,ORA通过自身软件计算出角膜阻力因子(Corneal Resistance Factor, CRF),表示角膜阻抗外力的能力 [13]。

陈世豪等 [13] 提出随着圆锥角膜发展,角膜逐渐变薄,CH和CRF不断降低。当CH为8.650 mmHg时,区分圆锥角膜与正常眼的敏感度和特异度分别是87.2%和84%;CRF为8.55 mmHg时,区分圆锥角膜与正常眼的敏感度和特异度分别是74.4%和92%。FangJun Bao等 [14] 提出CH和CRF与角膜组织粘弹性有关,随着胶原组织的破坏,角膜失去了形状和功能,导致角膜抵抗外力作用减弱。Yu Zhao等 [15] 推测刚度参数(Stiffness parameter A1, SP-A1)是表现角膜抗变形能力的有用指标。随着圆锥角膜病情进展,SP-A1不断减小,SP-A1与CH和CRF呈正相关,SP-A1与角膜最大凹陷时的形变幅度(deformation amplitude, DA)呈负相关,且圆锥角膜组的DA大于正常角膜组。但是ORA的检查区域有限且不能显示角膜动态反应的实时过程,可能导致标准生物力学参数(CH和CRF)识别正常角膜和亚临床圆锥角膜的能力差。

7. 角膜生物力学分析仪(Corvis ST)

角膜生物力学分析仪(Corvis ST)是一台Scheimpflug高速相机分析仪器。客观显示脉冲气流对角膜中央的作用,记录角膜形变幅度图、角膜压平长度图、角膜形变速率图以及计算出角膜变形时的生物力学相关性参数:角膜从初始状态至第一/第二压平状态的时间(A1T/A2T)、第一/第二压平状态时角膜顶点的瞬时速率(Vin/Vout)、达最大压陷状态时角膜反向曲率半径(HC radius, HCR)、达最大压陷状态时角膜顶点间的垂直距离(DA)等 [16]。

有研究表明 [17],Corvis ST可以区分正常角膜与圆锥角膜,圆锥角膜的Vin/Vout以及DA比正常角膜明显增大、HCR比正常角膜明显减小,因此可以利用Corvis ST识别早期圆锥角膜。Roghiyeh Elham等 [18] 指出区分圆锥角膜和正常角膜的A1T诊断临界值为7 ms,ROC曲线下面积大于0.9且敏感性和特异性约为90%。因为健康角膜的正常结构和粘弹性允许较小的变形幅度,需要长时间才能压平,而圆锥角膜结构的变形和粘弹性异常导致角膜硬度降低,角膜压平时间相对缩短。Ambrosio等 [19] 联合Pentacam和Corvis ST仪器,通过优化计算方法产生生物力学/断层扫描地形图指数(Tomographic and biomechanical index, TBI),并提出TBI比Corvis ST生物力学参数更准确诊断早期圆锥角膜,TBI诊断临界值为0.29,敏感度和特异度分别为90.4%、96%。Mohammad-Reza Sedaghat等 [17] 指出TBI用于检测角膜扩张性疾病,其诊断临界值为0.49时,AUC、敏感度和特异度分别为1.0%、100%和100%。Pratik Kataria等 [20] 提出区分早期圆锥角膜和正常眼的TBI诊断临界值为0.63时,其准确性、灵敏度和特异度分别为99.5%、99%和100%。

8. 基因检测

目前的研究表明,大多数圆锥角膜为散发性病例,圆锥角膜的染色体位点缺乏一致性,多个染色体区域变异对该病的发生发展起作用,很难确定圆锥角膜的确切致病基因。然而,已经检测出VSX1 [21]、DOCK9 [22]、ZNF469 [23]、FLG [24]、TGFBI [25]、RAB3GAP1 [26]、COL4A4 [27]、MPDZ [28] 等基因可能与圆锥角膜有关。Wang等 [21] 研究发现圆锥角膜中VSX1表达升高,推测VSX1导致角化细胞的异常激活,改变细胞外基质的分泌和角膜基质的结构,使得角膜基质的胶原纤维发生了畸变和衰减,从而胶原层的纤维间距离减少,参与了圆锥角膜的发病。Ha Ae Bae等 [26] 研究指出RAB3GAP1上游的单核苷酸多态性(single nucleotide polymorphism, SNP) rs4954218位点与圆锥角膜的发生显著相关。RAB3GAP1是编码异二聚体酶RAB3GAP (RAB3GTPase激活蛋白)的催化亚基,是RAB3周期的关键调节因子,控制钙介导的神经递质和激素的胞吐。Saman Sargazi等 [27] 提出基因COLA4A和KIF26B参与了巴西人群圆锥角膜的发病,COLA4A负责编码角膜正常功能的胶原蛋白,胶原合成的遗传变异可能会改变不同人群患圆锥角膜病的风险。除此之外,有研究者提出如HGF [29]、LOX [30] [31] 等基因与圆锥角膜的发生有关。

圆锥角膜基因筛查包括致病性基因变异位点检测及易感基因多态性位点检测。致病性基因变异位点检测通常包括VSX1 [21]、DOCK9 [22]、ZNF469 [23]、FLG [24]、TGFBI [25] 等基因,一般而言,圆锥角膜患者可检出携带该部分变异,非圆锥角膜患者人群不携带。若检出已知致病性基因变异,同时有圆锥角膜临床表现,考虑为该基因变异导致的遗传性圆锥角膜(单基因致病);若检出已知致病性基因变异,没有圆锥角膜临床表现,考虑为致病性基因携带者,不应进行角膜屈光手术,需进行圆锥角膜的进一步相关检查。易感基因多态性位点检测包括RAB3GAP1 [26]、COL4A4 [27]、MPDZ [28] 等。检测结果由基因位点OR值(指病例组中暴露人数与非暴露人数的比值除以对照组中暴露人数与非暴露人数的比值)与健康角膜人群频率综合计算得出。结果分为低风险(OR < 0.95)、正常风险(0.95 < OR < 1.05)以及高风险(OR > 1.05)。

圆锥角膜是角膜屈光手术的绝对禁忌症,典型的圆锥角膜在临床上容易诊断,但早期圆锥角膜症状与体征不明显,临床中容易漏诊。临床各项检查技术的进展为早期诊断圆锥角膜提供有力的依据,综合多种检查有助于早期诊断圆锥角膜。

参考文献

[1] 中华医学会眼科学分会角膜病学组. 中国圆锥角膜诊断和治疗专家共识(2019年) [J]. 中华眼科杂志, 2019, 55(12): 891-895.
[2] Gomes, J.A.P., Tan, D., Rapuano, C.J., Belin, M.W., Ambrósio Jr., R., Guell, J.L., et al. (2015) Global Consensus on Keratoconus and Ectatic Diseases. Cornea, 34, 359-369.
https://doi.org/10.1097/ICO.0000000000000408
[3] Cavas-Martínez, F., De la Cruz, S.E., Nieto, M.J., Fernández Cañavate, F.J. and Fernández-Pacheco, D.G. (2016) Corneal Topography in Keratoconus: State of the Art. Eye and Vision, 3, Article No. 5.
https://doi.org/10.1186/s40662-016-0036-8
[4] Rabinowitz, Y.S. and McDonnell, P.J. (1989) Computer-Assisted Corneal Topography in Keratoconus. Refract Corneal Surg, 5, 400-408.
https://doi.org/10.3928/1081-597X-19891101-10
[5] Aghazadeh, A.M., Hashemi, H., Ramin, S., Yekta, A., Taheri, A., Nabovati, P., et al. (2017) Corneal Thickness Measurements with Scheimpflug and Slit Scanning Imaging Techniques in Keratoconus. Journal of Current Ophthalmology 29, 23-27.
https://doi.org/10.1016/j.joco.2016.09.005
[6] 王幼生. 现代眼视光学[M]. 广州: 广东科学技术出版社, 2006: 349.
[7] Jafarinasab, M.R., Shirzadeh, E., Feizi, S., Karimian, F., Akaberi, A. and Hasanpour, H. (2015) Sensitivity and Specificity of Posterior and Anterior Corneal Elevation Measured by Orbscan in Diagnosis of Clinical and Subclinical Keratoconus. Journal of Ophthalmic and Vision Research, 10, 10-15.
[8] Abdolreza, M., Reza, S.M., Mitra, A., Alizadeh, Y., Soltanipour, S., Veisi, H., et al. (2019) Correlation of Corneal Elevations Measured by Scheimpflug Corneal Imaging with Severity of Keratoconus. Journal of Current Ophthalmology, 31, 377-381.
https://doi.org/10.1016/j.joco.2019.06.007
[9] 安阳, 郑春晖, 何伟, 卢山. Pentacam眼前节分析仪对散光患者中圆锥角膜和亚临床圆锥角膜的临床研究[J]. 国际眼科杂志, 2016, 16(3): 517-519. http://doi.org/10.3980/j.issn.1672-5123.2016.3.31
[10] El Wardani, M., Hashemi, K., Aliferis, K. and Kymionis, G (2019) Topographic Changes Simulating Keratoconus in Patients with Irregular Inferior Epithelial Thickening Documented by Anterior Segment Optical Coherence Tomography. Clinical Ophthalmology, 13, 2103-2110.
https://doi.org/10.2147/OPTH.S208101
[11] Kitazawa, K., Itoi, M., Yokota, I., Wakimasu, K., Yuko, C., Nakamura, Y., et al. (2018) Involvement of Anterior and Posterior Corneal Surface Area Imbalance in the Pathological Change of Keratoconus. Scientific Reports, 8, Article No. 14993.
https://doi.org/10.1038/s41598-018-33490-z
[12] Kamiya, K., Ayatsuka, Y., Kato, Y., Fujimura, F., Takahashi, M., Shoji, N., et al. (2019) Keratoconus Detection Using Deep Learning of Colour-Coded Maps with Anterior Segment Optical Coherence Tomography: A Diagnostic Accuracy Study. BMJ Open, 9, e31313.
https://doi.org/10.1136/bmjopen-2019-031313
[13] 汪晓瑜, 陈世豪, 王勤美, 黄锦海. 正常角膜、亚临床圆锥角膜及圆锥角膜角膜生物力学的临床研究[J]. 医学研究杂志, 2010, 39(8): 82-85. http://doi.org/10.3969/j.issn.1673-548X.2010.08.024
[14] Bao, F.J., Geraghty, B., Wang, Q.M. and Elsheikh, A. (2016) Consideration of Corneal Biomechanics in the Diagnosis and Management of Keratoconus: Is It Important? Eye and Vision, 3, Article No. 18.
https://doi.org/10.1186/s40662-016-0048-4
[15] Zhao, Y., Shen, Y., Yan, Z., Tian, M., Zhao, J. and Zhou, X. (2019) Relationship among Corneal Stiffness, Thickness, and Biomechanical Parameters Measured by Corvis ST, Pentacam and ORA in Keratoconus. Frontiers in Physiology, 10, Article No. 740.
https://doi.org/10.3389/fphys.2019.00740
[16] Shih, P.J., Cao, H.J., Huang, C.J., Wang, I.J., Shih, W.P. and Yen, J.Y. (2015) A Corneal Elastic Dynamic Model Derived from Scheimpflug Imaging Technology. Ophthalmic and Physiological Optics, 35, 663-672.
https://doi.org/10.1111/opo.12240
[17] Sedaghat, M.R., Momeni-Moghaddam, H., Ambrosio, R.J., Heidari, H.R., Maddah, N., Danesh, Z., et al. (2018) Diagnostic Ability of Corneal Shape and Biomechanical Parameters for Detecting Frank Keratoconus. Cornea, 37, 1025-1034.
https://doi.org/10.1097/ICO.0000000000001639
[18] Roghiyeh, E., Ebrahim, J., Hassan, H., Amanzadeh, K., Shokrollahzadeh, F., Yekta, A., et al. (2017) Keratoconus diagnosis Using Corvis ST measured biomechanical parameters. Journal of Current Ophthalmology, 29, 175-181.
https://doi.org/10.1016/j.joco.2017.05.002
[19] Ambrosio, R.J., Lopes, B.T., Faria-Correia, F., Salomão, M.Q., Bühren, J., Roberts, C.J., et al. (2017) Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Journal of Refractive Surgery, 33, 434-443.
https://doi.org/10.3928/1081597X-20170426-02
[20] Kataria, P., Padmanabhan, P., Gopalakrishnan, A., Padmanaban, V., Mahadik, S. and Ambrósio Jr., R. (2019) Accuracy of Scheimpflug-Derived Corneal Biomechanical and Tomographic Indices for Detecting Subclinical and Mild Keratectasia in a South Asian Population. Journal of Cataract and Refractive Surgery, 45, 328-336.
https://doi.org/10.1016/j.jcrs.2018.10.030
[21] Wang, Y.N., Liu, X.N., Wang, X.D., Yin, Y., Chen, Y., Xiao, X.H., et al. (2019) Expression of Visual System Homeobox 1 in Human Keratoconus. International Journal of Ophthalmology, 12, 201-206.
[22] Karolak, J.A., Polakowski, P., Szaflik, J., Szaflik, J.P. and Gajecka, M. (2016) Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. Ophthalmic Genetics, 3, 37-43.
https://doi.org/10.3109/13816810.2014.926375
[23] Lu, Y., Vitart, V., Burdon, K.P., Chuen Khor, C., Bykhovskaya, Y., Mirshahi, A., et al. (2013) Genome-Wide Association Analyses Identify Multiple Loci Associated with Central Corneal Thickness and Keratoconus. Nature Genetics, 45, 155-163.
https://doi.org/10.1038/ng.2506
[24] Droitcourt, C., Touboul, D., Ged, C., Ezzedine, K., Cario-André, M., de Verneuil, H., et al. (2011) A Prospective Study of Filaggrin Null Mutations in Keratoconus Patients with or without Atopic Disorders. Dermatology, 222, 336-341.
https://doi.org/10.1159/000328408
[25] Karolak, J.A., Kulinska, K., Nowak, D.M., Pitarque, J.A., Molinari, A., Rydzanicz, M., et al. (2011) Sequence Variants in COL4A1 and COL4A2 Genes in Ecuadorian Families with Keratoconus. Molecular Vision, 17, 827-843.
[26] Ha, A.B., Richard, A.D.M., Richard, G.L., Phillips, T., Coster, D.J., Mitchell, P., et al. (2013) Replication and Meta-Analysis of Candidate Loci Identified Variation at RAB3GAP1 Associated with Keratoconus. Investigative Ophthalmology & Visual Science, 54, 5132-5135.
https://doi.org/10.1167/iovs.13-12377
[27] Saman, S., Mahdiyeh, M., Milad, H.N., Saravani, R. and Malek Raisi, H. (2019) Association of KIF26B and COL4A4 Gene Polymorphisms with the Risk of Keratoconus in a Sample of Iranian Population. International Ophthalmology, 39, 2621-2628.
https://doi.org/10.1007/s10792-019-01111-x
[28] Liskova, P., Dudakova, L., Krepelova, A., Klema, J. and Hysi, P.G. (2017) Replication of SNP Associations with Keratoconus in a Czech Cohort. PLoS ONE, 12, e0172365.
https://doi.org/10.1371/journal.pone.0172365
[29] You, J., Wen, L., Roufas, A., Hodge, C., Sutton, G. and Madigan, M.C. (2015) Expression of HGF and c-Met Proteins in Human Keratoconus Corneas. Journal of Ophthalmology, 2015, Article ID: 852986.
https://doi.org/10.1155/2015/852986
[30] Karolak, J.A., Ginter, M.B., Tomela, K., Kabza, M., Nowak-Malczewska, D.M., Rydzanicz, M., et al. (2020) Further Evaluation of Differential Expression of Keratoconus Candidate Genes in Human Corneas. PeerJ, 8, e9793.
https://doi.org/10.7717/peerj.9793
[31] Gadelha, D.N.B., Feitosa, A.F.B., da Silva, R.G., Antunes, L.T., Muniz, M.C., de Oliveira, M.A., et al. (2020) Screening for Novel LOX and SOD1 Variants in Keratoconus Patients from Brazil. Journal of Ophthalmic & Vision Research, 15, 138-148.
https://doi.org/10.18502/jovr.v15i2.6730