# 变系数非线性二阶问题有效的Fourier谱逼近

#### 江婷婷

贵州师范大学数学科学学院,贵州 贵阳

收稿日期: 2022年6月4日; 录用日期: 2022年6月29日; 发布日期: 2022年7月6日

## 摘要

本文针对周期边界条件下变系数非线性二阶问题提出了一种有效的Fourier谱方法。首先,根据边界条件 引入了适当的Sobolev空间及其逼近空间,建立了变系数非线性二阶问题的弱形式和相应的离散格式。 基于这非线性的离散格式,我们建立了一种线性迭代算法,并给出了该算法相应的Matlab程序设计。最 后,我们给出了数值算例,数值结果表明我们提出的算法是收敛的和高精度的。

## 关键词

二阶非线性问题,周期边界条件,Fourier谱方法,程序设计,数值实验

# Efficient Fourier Spectral Approximation for Nonlinear Second-Order Problems with Variable Coefficients

### **Tingting Jiang**

School of Mathematical Sciences, Guizhou Normal University, Guiyang Guizhou

Received: Jun. 4<sup>th</sup>, 2022; accepted: Jun. 29<sup>th</sup>, 2022; published: Jul. 6<sup>th</sup>, 2022

#### Abstract

In this paper, an efficient Fourier spectral method is proposed for nonlinear second-order problems with variable coefficients under periodic boundary conditions. Firstly, an appropriate Sobolev space and its approximation space are introduced according to the boundary conditions, and the weak form and the corresponding discrete scheme of the nonlinear second-order problem with variable coefficients are established. Based on the nonlinear discrete scheme, we establish a linear iterative algorithm and its Matlab program design. Finally, we give a numerical example, and the numerical results show that our proposed algorithm is convergent and highly accurate.

#### **Keywords**

Second-Order Nonlinear Problems, Periodic Boundary Conditions, Fourier Spectral Method, Program Design, Numerical Experiments

Copyright © 2022 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u> CC Open Access

## 1. 引言

很多科学和工程问题最终都归结为求解非线性偏微分方程,如等离子体物理、非线性光学,激光脉冲中的自聚焦、热脉冲在晶体中的传播以及在极低温下玻色 - 爱因斯坦凝聚的动力学可由非线性薛定谔方程来描述[1] [2] [3] [4] [5];在材料科学和流体动力学中的许多复杂的运动界面问题可由 Allen-Cahn 和 Cahn-Hilliard 方程来描述[6] [7] [8] [9] [10]。因此,提出一种有效求解非线性偏微分方程的高精度数值方法是非常有意义的。

到目前为止,已有很多数值方法求解非线性偏微分方程[11]-[18]。但它们主要都是基于有限元方法和 有限差分方法,要获得高精度的数值解需要花费很多计算时间和内存容量。在[19]中,非线性特征值问题 在矩形网格一定条件下,证明了光谱的高精度。据我们所知,很少有关于周期边界条件下变系数非线性 二阶问题的 Fourier 谱方法的报道。因此,本文的目的是针对周期边界条件下变系数非线性二阶问题提出 了一种有效的 Fourier 谱方法。首先,根据边界条件引入了适当的 Sobolev 空间及其逼近空间,建立了变 系数非线性二阶问题的弱形式和相应的离散格式。基于这非线性的离散格式,我们建立了一种线性迭代 算法,并给出了该算法相应的 Matlab 程序设计。最后,我们给出了数值算例,数值结果表明我们提出的 算法是收敛的和高精度的。

本文剩余部分安排如下:在第二节中,我们推导了变系数非线性二阶问题的弱形式及其离散格式。 在第三节中,我们详细描述了算法的实现过程及其程序设计。在第四节中,我们给出了一些数值算例。

### 2. 弱形式及其离散格式

作为一个模型,我们考虑如下的变系数非线性二阶问题:

$$-\Delta u + V(x, y)u + h(u^2)u = f, (x, y) \in \Omega,$$

$$(2.1)$$

$$u(x, y) = u(x + 2\pi, y), \ u(x, y) = u(x, y + 2\pi),$$
(2.2)

其中V(x,y)为非负变系数,  $h(u^2)$ 为非线性项,  $\Omega = (0,2\pi) \times (0,2\pi)$ 为计算区域。

下面我们将推导(2.1)~(2.2)的弱形式及其离散格式,用 $H^{s}(\Omega)$ 表示s阶 Sobolev 空间,  $\|\cdot\|_{s}$ 表示 $H^{s}(\Omega)$ 中的范数。特别地,我们有

$$H^{0}(\Omega) = L^{2}(\Omega) = \left\{ u : \int_{\Omega} |u|^{2} \, \mathrm{d}x \mathrm{d}y < \infty \right\},\,$$

相应的内积和范数分别为:

$$(u,v) = \int_{\Omega} u \overline{v} dx dy, ||u|| = \left(\int_{\Omega} |u|^2 dx dy\right)^{\frac{1}{2}}$$

DOI: 10.12677/aam.2022.117453

定义 Sobolev 空间:

$$H_{p}^{1}(\Omega) = \left\{ u \in H^{1}(\Omega) : u(x, y) = u(x + 2\pi, y), u(x, y) = u(x, y + 2\pi) \right\}$$

相应的内积和范数分别为:

$$(u,v)_{1,\Omega} = \sum_{|\alpha|=0}^{1} \int_{\Omega} D^{\alpha} u D^{\alpha} \overline{v} dx dy,$$
$$\|u\|_{1,\Omega} = \left(\sum_{|\alpha|=0}^{1} \|D^{\alpha} u\|^{2}\right)^{\frac{1}{2}},$$

由格林公式及周期边界条件可知,问题(2.1)~(2.2)的弱形式为:找 $u \in H^1_p(\Omega)$ ,使得

$$a(u,v) = F(v), \quad \forall v \in H^1_p(\Omega), \tag{2.3}$$

其中

$$a(u,v) = \int_{\Omega} \nabla u \nabla \overline{v} dx dy + \int_{\Omega} V u \overline{v} dx dy + \int_{\Omega} h(u^2) u \overline{v} dx dy.$$
$$F(v) = \int_{\Omega} f \overline{v} dx dy.$$

定义逼近空间:

$$X_{M}(\Omega) = \operatorname{Span} \left\{ e^{itx} e^{iqy} : |t| = 0, 1, \cdots, M; |q| = 0, 1, \cdots, M \right\}.$$

则弱形式(2.3)相应的离散格式为: 找 $u_M \in X_M(\Omega)$ , 使得

$$a(u_M, v_M) = F(v_M), \ \forall v_M \in X_M(\Omega).$$

$$(2.4)$$

## 3. 算法的实现及其程序设计

### 3.1. 算法的实现

在这一节,我们将详细描述算法的实现过程,并给出该算法相应的程序设计。由于离散格式(2.4)是 非线性的,我们将通过 Picard 迭代法进行求解。我们将(2.4)相应的线性问题的解作为迭代初值,即:找  $u_M^0 \in X_M(\Omega)$ ,使得

$$\left(\nabla u_{M}^{0}, \nabla v_{M}\right)_{N} + \left(V u_{M}^{0}, v_{M}\right)_{N} = \left(f, v_{M}\right)_{N}, \ \forall v_{M} \in X_{M}\left(\Omega\right),$$
(3.1)

其中 $(u,v)_N$ 表示u与v的离散内积,则可建立(2.4)的一种 Picard 迭代格式: 找 $u_M^m \in X_M(\Omega)$ ,使得

$$\left(\nabla u_{M}^{m}, \nabla v_{M}\right)_{N} + \left(V u_{M}^{m}, v_{M}\right)_{N} + \left(h\left(\left(u_{M}^{m-1}\right)^{2}\right) u_{M}^{m}, v_{M}\right)_{N} = \left(f, v_{M}\right)_{N}, \quad \forall v_{M} \in X_{M}\left(\Omega\right),$$
(3.2)

其中 u<sub>M</sub><sup>0</sup> 由(3.1)求出。下面我们将分别建立(3.1)和(3.2)的矩阵形式,令

$$u_M^0 = \sum_{|t|=0}^M \sum_{|q|=0}^M u_{tq}^0 e^{itx} e^{iqy},$$
(3.3)

$$u_M^m = \sum_{|t|=0}^M \sum_{|q|=0}^M u_{tq}^m e^{itx} e^{iqy}.$$
(3.4)

DOI: 10.12677/aam.2022.117453

$$U^{m} = \begin{pmatrix} u_{-M,-M}^{m} & \cdots & u_{-M,0}^{m} & \cdots & u_{-M,M}^{m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ u_{0,-M}^{m} & \cdots & u_{0,0}^{m} & \cdots & u_{0,M}^{m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ u_{M,-M}^{m} & \cdots & u_{M,0}^{m} & \cdots & u_{M,M}^{m} \end{pmatrix}.$$

我们用 $\bar{U}^m$ 表示由 $U^m$ 的列构成的长度为 $(2M+1)^2$ 的列向量。令 $\varphi_i(x) = e^{ix}$ ,  $\varphi_q(x) = e^{iqx}$ , 用  $\zeta_\mu, w_\mu(\mu = 0, 1, \dots, N-1)$ 分别表示傅里叶积分的高斯点和权,将(3.3)代入(3.1),并取 $v_M = e^{ikx}e^{ily}$ ,  $(|k| = 0, 1, \dots, M; |l| = 0, 1, \dots, M)$ ,则有

$$\begin{split} \left(\nabla u_{M}^{0}, \nabla v_{M}\right)_{N} &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{0} \left(\nabla \left(e^{itx}e^{iqy}\right), \nabla \left(e^{-ikx}e^{-ily}\right)\right)_{N} \\ &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{0} \sum_{\mu,\sigma=0}^{N-1} \partial_{x} \varphi_{t}\left(\zeta_{\mu}\right) \varphi_{q}\left(\zeta_{\sigma}\right) \partial_{x} \varphi_{k}\left(\zeta_{\mu}\right) \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma} \\ &+ \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{0} \sum_{\mu,\sigma=0}^{N-1} \varphi_{t}\left(\zeta_{\mu}\right) \partial_{y} \varphi_{q}\left(\zeta_{\sigma}\right) \varphi_{k}\left(\zeta_{\mu}\right) \partial_{y} \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma}, \\ \left(V u_{M}^{0}, v_{M}\right)_{N} &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{0} \left(V e^{itx} e^{iqy}, e^{-ikx} e^{-ily}\right)_{N} \\ &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{0} \sum_{\mu,\sigma=0}^{N-1} V\left(\zeta_{\mu}, \zeta_{\sigma}\right) \varphi_{t}\left(\zeta_{\mu}\right) \varphi_{q}\left(\zeta_{\sigma}\right) \varphi_{k}\left(\zeta_{\mu}\right) \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma}, \\ &\left(f, v_{M}\right)_{N} = \sum_{\mu,\sigma=0}^{N-1} f\left(\zeta_{\mu}, \zeta_{\sigma}\right) \varphi_{k}\left(\zeta_{\mu}\right) \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma}, \end{split}$$

则(2.3)可以写为下列的矩阵形式

$$(A+B+C)\overline{U}^0 = F, \tag{3.5}$$

其中

$$\begin{split} a_{tqkl} &= \sum_{\mu,\sigma=0}^{N-1} \partial_x \varphi_t \left( \zeta_{\mu} \right) \varphi_q \left( \zeta_{\sigma} \right) \partial_x \varphi_k \left( \zeta_{\mu} \right) \varphi_l \left( \zeta_{\sigma} \right) w_{\mu} w_{\sigma}, \\ b_{tqkl} &= \sum_{\mu,\sigma=0}^{N-1} \varphi_t \left( \zeta_{\mu} \right) \partial_y \varphi_q \left( \zeta_{\sigma} \right) \varphi_k \left( \zeta_{\mu} \right) \partial_y \varphi_l \left( \zeta_{\sigma} \right) w_{\mu} w_{\sigma}, \\ c_{tqkl} &= \sum_{\mu,\sigma=0}^{N-1} V \left( \zeta_{\mu}, \zeta_{\sigma} \right) \varphi_t \left( \zeta_{\mu} \right) \varphi_q \left( \zeta_{\sigma} \right) \varphi_k \left( \zeta_{\mu} \right) \varphi_l \left( \zeta_{\sigma} \right) w_{\mu} w_{\sigma}, \\ f_{kl} &= \sum_{\mu,\sigma=0}^{N-1} f \left( \zeta_{\mu}, \zeta_{\sigma} \right) \varphi_k \left( \zeta_{\mu} \right) \varphi_l \left( \zeta_{\sigma} \right) w_{\mu} w_{\sigma} \\ A &= \left( a_{tqkl} \right)_{t,q,k,l=0}^{2M+1}, \quad B = \left( b_{tqkl} \right)_{t,q,k,l=0}^{2M+1}, \quad C = \left( c_{tqkl} \right)_{t,q,k,l=0}^{2M+1}, \quad F = \left( f_{kl} \right)_{k,l=0}^{2M+1}. \end{split}$$

类似地,将(3.4)代入(3.2)可得

$$\begin{split} \left(\nabla u_{M}^{m}, \nabla v_{M}\right)_{N} &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \left(\nabla \left(e^{itx} e^{iqy}\right), \nabla \left(e^{-ikx} e^{-ily}\right)\right)_{N} \\ &= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \sum_{\mu,\sigma=0}^{N-1} \partial_{x} \varphi_{t} \left(\zeta_{\mu}\right) \varphi_{q} \left(\zeta_{\sigma}\right) \partial_{x} \varphi_{k} \left(\zeta_{\mu}\right) \varphi_{l} \left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma} \\ &+ \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \sum_{\mu,\sigma=0}^{N-1} \varphi_{t} \left(\zeta_{\mu}\right) \partial_{y} \varphi_{q} \left(\zeta_{\sigma}\right) \varphi_{k} \left(\zeta_{\mu}\right) \partial_{y} \varphi_{l} \left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma} \end{split}$$

$$\begin{pmatrix} Vu_{M}^{m}, v_{M} \end{pmatrix}_{N} = \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \left( Ve^{itx} e^{iqy}, e^{-ikx} e^{-ily} \right)_{N}$$

$$= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \sum_{\mu,\sigma=0}^{N-1} V\left(\zeta_{\mu}, \zeta_{\sigma}\right) \varphi_{t}\left(\zeta_{\mu}\right) \varphi_{q}\left(\zeta_{\sigma}\right) \varphi_{k}\left(\zeta_{\mu}\right) \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma},$$

$$\left( h\left( \left(u_{M}^{m-1}\right)^{2} \right) u_{M}^{m}, v_{M} \right)_{N} = \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \left( h\left( \left(u_{M}^{m-1}\right)^{2} \right) e^{itx} e^{iqy}, e^{-ikx} e^{-ily} \right)_{N}$$

$$= \sum_{|t|=0}^{M} \sum_{|q|=0}^{M} u_{tq}^{m} \sum_{\mu,\sigma=0}^{N-1} h\left( \left(u_{M}^{m-1}\left(\zeta_{\mu}, \zeta_{\sigma}\right)\right)^{2} \right) \varphi_{t}\left(\zeta_{\mu}\right) \varphi_{q}\left(\zeta_{\sigma}\right) \varphi_{k}\left(\zeta_{\mu}\right) \varphi_{l}\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma},$$

则(2.4)可以写为下列的矩阵形式

$$\left(A+B+C+D_m\right)\overline{U}^m = F,\tag{3.6}$$

其中

$$d_{tqkl} = \sum_{\mu,\sigma=0}^{N-1} h\left(\left(u_M^{m-1}\left(\zeta_{\mu},\zeta_{\sigma}\right)\right)^2\right) \varphi_t\left(\zeta_{\mu}\right) \varphi_q\left(\zeta_{\sigma}\right) \varphi_k\left(\zeta_{\mu}\right) \varphi_l\left(\zeta_{\sigma}\right) w_{\mu} w_{\sigma}, D_m = \left(d_{tqkl}\right)_{t,q,k,l=0}^{2M+1}.$$

3.2. 算法的程序设计

|     | 算法: Picard 迭代方法解决非线性方程                                  |  |  |  |
|-----|---------------------------------------------------------|--|--|--|
| 输入: | M: 表示傅里叶基函数的个数;                                         |  |  |  |
|     | N: 表示表示傅里叶基函数的点的个数;                                     |  |  |  |
|     | Errorbound:误差的最小限制。                                     |  |  |  |
| 1   | x=zeros(N,1);                                           |  |  |  |
| 2   | y=zeros(N,1);                                           |  |  |  |
| 3   | for j=1:N                                               |  |  |  |
| 4   | x(j)=2*pi*(j-1)/N;                                      |  |  |  |
| 5   | y(j)=2*pi*(j-1)/N;                                      |  |  |  |
| 6   | end                                                     |  |  |  |
| 7   | Al=zeros(2*M+1,2*M+1); A2=zeros(2*M+1,2*M+1); a=[-M:M]; |  |  |  |
| 8   | <pre>for i=1:length(A1)</pre>                           |  |  |  |
| 9   | <pre>for j=1:length(A1)</pre>                           |  |  |  |
| 10  | <pre>if a(i)==a(j)</pre>                                |  |  |  |
| 11  | A1(i,j)=2*pi; A2(i,j)=2*pi*a(j)*a(j);                   |  |  |  |
| 12  | end                                                     |  |  |  |
| 13  | end                                                     |  |  |  |
| 14  | end                                                     |  |  |  |
| 15  | e=zeros(2*M+1,N); el=zeros(2*M+1,N);                    |  |  |  |

| Continued |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16        | for i=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17        | e(i,:)=exp(li*a(i)*x); el(i,:)=exp(-li*a(i)*x);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 18        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19        | w=2*pi/N; A3=zeros((2*M+1)^2,(2*M+1)^2); m=0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 20        | for k=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21        | for l=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 22        | m=m+1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23        | A3(m,:) = (kron(A2(l,:),A1(k,:))+kron(A1(l,:),A2(k,:)));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 24        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26        | $V1=(x.^2)*ones(1,N)+ones(N,1)*(x.^2);$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27        | A2=zeros((2*M+1)^2,(2*M+1)^2);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 28        | for i=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 29        | for j=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 30        | for m=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 31        | for n=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32        | A2(j+(2*M+1)*(i-1),m+(2*M+1)*(n-1))<br>=sum(sum(V1.*(transpose(w*el(i,:).*e(m,:))*(w*el(j,:).*e(n,:)))));                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 34        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 36        | end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37        | A=A3+(1\2)*A2;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38        | F=zeros((2*M+1)^2,1);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 39        | m=0;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40        | for 1=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 41        | for k=1:2*M+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 42        | m=m+1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 43        | for i=1:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 44        | for j=1:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45        | F(m,1)=F(m,1)+(exp(3*cos(x(i)+y(j)))+2*exp(cos(x(i)+y(j)))*cos(x(i)+y(j))+<br>exp(cos(x(i)+y(j)))*(2*x(i)^2+2*y(j)^2)-2*exp(cos(x(i)+y(j)))*sin(x(i)+y(j)))*(2*x(i))*(2*x(i)^2+2*y(j)^2)-2*exp(cos(x(i)+y(j)))*sin(x(i)+y(j)))*(2*x(i))*(2*x(i)^2+2*y(j)^2)-2*exp(cos(x(i)+y(j)))*(2*x(i))*(2*x(i))*(2*x(i)^2+2*y(j)^2)-2*exp(cos(x(i)+y(j)))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x(i))*(2*x( |

| 江炉炉 | 汩 | [婷婷 |
|-----|---|-----|
|-----|---|-----|

| Continued |                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------|
| 46        | end                                                                                                         |
| 47        | end                                                                                                         |
| 48        | end                                                                                                         |
| 49        | end                                                                                                         |
| 50        | $U=A\setminus F; U1=reshape(U,2*M+1,2*M+1); U2=0;$                                                          |
| 51        | for i=1:2*M+1                                                                                               |
| 52        | for j=1:2*M+1                                                                                               |
| 53        | U2=U2+U1(i,j)*transpose(e(j,:))*e(i,:);                                                                     |
| 54        | end                                                                                                         |
| 55        | end                                                                                                         |
| 56        | <pre>iterations=0; [x1,y1]=meshgrid(x,y); u2=exp(cos(x1+y1));</pre>                                         |
| 57        | <pre>error1=1; surfc(x1,y1,u2);</pre>                                                                       |
| 58        | while errorl>errorbound                                                                                     |
| 59        | C=zeros((2*M+1)^2,(2*M+1)^2);                                                                               |
| 60        | for i=1:2*M+1                                                                                               |
| 61        | for j=1:2*M+1                                                                                               |
| 62        | for m=1:2*M+1                                                                                               |
| 63        | for n=1:2*M+1                                                                                               |
| 64        | C(j+(2*M+1)*(i-1),m+(2*M+1)*(n-1))<br>=sum(sum(U2.^2.*(transpose(w*el(i,:).*e(m,:))*(w*el(j,:).*e(n,:))))); |
| 65        | end                                                                                                         |
| 66        | end                                                                                                         |
| 67        | end                                                                                                         |
| 68        | end                                                                                                         |
| 69        | $A=A3+(1\2)*A2+C;$ F1=F; U5=A\F1; U3=reshape(U5,2*M+1,2*M+1);                                               |
| 70        | U2=0;                                                                                                       |
| 71        | for i=1:2*M+1                                                                                               |
| 72        | for j=1:2*M+1                                                                                               |
| 73        | U2=U2+U3(i,j)*transpose(e(j,:))*e(i,:);                                                                     |
| 74        | end                                                                                                         |
| 75        | end                                                                                                         |

Continued

```
76 error1=(sum(sum(((real(U2)-u2).^2).*w.*w)))^(1/2);
```

77 iterations=iterations+1;

78 end

#### 4. 数值实验

为了表明算法的有效性,我们将进行数值实验。我们在 MATLAB2018b 平台上编程计算。定义逼近 解与精确解之间的误差如下:

$$e\left(u\left(x,y\right),u_{M}^{K}\left(x,y\right)\right)=\left\|u\left(x,y\right)-u_{M}^{K}\left(x,y\right)\right\|_{L^{2}\left(\Omega\right)},$$

其中 K 表示迭代次数。

例 1 我们取  $u = e^{\cos(x+y)}$ ,  $V(x, y) = \frac{1}{2}(x^2 + y^2)$ ,  $h(u^2) = |u|^2$ , 显然 u 满足周期边界条件, 将  $u, V, h(u^2)$ 代入(2.3)可算出 f。我们取迭代次数 K = 50, 对于不同的 M 和 N, 我们在表 1 中列出了逼近解与精确解 之间的误差结果。

**Table 1.** The error results between the approximate solution and the exact solution for different *M* and *N* at the time K = 50 表 1. 当 K = 50 时,对于不同的 *M* 和 *N*,逼近解与精确解之间的误差结果

| Ν  | <i>M</i> = 5 | <i>M</i> =10 | <i>M</i> =15 | <i>M</i> = 20 |
|----|--------------|--------------|--------------|---------------|
| 20 | 2.0062e-04   | 6.9522e-09   | 5.6890e-04   | 0.0148        |
| 25 | 2.0061e-04   | 1.1924e-10   | 2.5305e-09   | 3.5227e-04    |
| 30 | 2.0061e-04   | 1.1112e-10   | 4.4999e-12   | 1.7210e-09    |
| 35 | 2.0061e-04   | 1.1112e-10   | 4.9326e-13   | 6.3780e-13    |
| 40 | 2.0061e-04   | 1.1112e-10   | 1.0410e-13   | 1.2146e-13    |

为了进一步表明算法的收敛性和高精度,我们还在图 1 中分别画出了精确解和逼近解的图像,在图 2 中分别画出了精确解与 *N* = 30, *M* = 10 和 *N* = 40, *M* = 20 时的逼近解之间的误差图像。



**Figure 1.** Images of the exact solution (left) and the approximate solution (right) for N = 40 and M = 20 图 1. 精确解(左)与 N = 40 和 M = 20 时的逼近解(右)的图像



**Figure 2.** Error image between the exact solution and the approximated solution for N = 30, M = 10 (left) and N = 40, M = 20 (right) **图 2.** 精确解与 N = 30, M = 10 (左)和 N = 40, M = 20 (右)时的逼近解之间的误差图像

从表 1 中可以看出,当迭代次数 K = 50,  $N \ge 35$ ,  $M \ge 15$  时,逼近解  $u_M^K(x, y)$ 达到了大约  $10^{-13}$  的 精度。另外,从图 1,图 2 进一步观察到我们的算法是收敛的和高精度的。

## 参考文献

- Griffiths, D.J. and Schroeter, D.F. (2018) Introduction to Quantum Mechanics. Cambridge University Press, Cambridge. <u>https://doi.org/10.1017/9781316995433</u>
- [2] Hasegawa, A. and Matsumoto, M. (2003) Optical Solitons in Fibers. In: Hasegawa, A. and Matsumoto, M., Eds., Optical Solitons in Fibers, Springer, Berlin, 41-59. <u>https://doi.org/10.1007/978-3-540-46064-0\_5</u>
- [3] Menyuk, C.R. (1987) Stability of Solitons in Birefringent Optical Fibers. I: Equal Propagation Amplitudes. *Optics Letters*, **12**, 614-616. <u>https://doi.org/10.1364/OL.12.000614</u>
- [4] Menyuk, C.R. (1988) Stability of Solitons in Birefringent Optical Fibers. II. Arbitrary Amplitudes. Journal of the Optical Society of America B, 5, 392-402. <u>https://doi.org/10.1364/JOSAB.5.000392</u>
- [5] Sulem, C. and Sulem, P.L. (2007) The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer Science & Business Media, Berlin.
- [6] Lowengrub, J. and Truskinovsky, L. (1998) Quasi-Incompressible Cahn-Hilliard Fluids and Topological Transitions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 2617-2654. https://doi.org/10.1098/rspa.1998.0273
- [7] Chen, L.Q. and Shen, J. (1998) Applications of Semi-Implicit Fourier-Spectral Method to Phase Field Equations. Computer Physics Communications, 108, 147-158. <u>https://doi.org/10.1016/S0010-4655(97)00115-X</u>
- [8] Anderson, D.M., McFadden, G.B. and Wheeler, A.A. (1998) Diffuse-Interface Methods in Fluid Mechanics. *Annual Review of Fluid Mechanics*, **30**, 139-165. <u>https://doi.org/10.1146/annurev.fluid.30.1.139</u>
- Chen, L.Q. (2002) Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 32, 113-140. <u>https://doi.org/10.1146/annurev.matsci.32.112001.132041</u>
- [10] Liu, C. and Shen, J. (2003) A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a Fourier-Spectral Method. *Physica D: Nonlinear Phenomena*, **179**, 211-228. <u>https://doi.org/10.1016/S0167-2789(03)00030-7</u>
- [11] Feng, X. and Prohl, A. (2003) Numerical Analysis of the Allen-Cahn Equation and Approximation for Mean Curvature Flows. *Numerische Mathematik*, 94, 33-65. <u>https://doi.org/10.1007/s00211-002-0413-1</u>
- [12] Feng, X. and Prohl, A. (2004) Error Analysis of a Mixed Finite Element Method for the Cahn-Hilliard Equation. Numerische Mathematik, 99, 47-84. <u>https://doi.org/10.1007/s00211-004-0546-5</u>
- [13] Ye, X. (2003) The Legendre Collocation Method for the Cahn-Hilliard Equation. Journal of Computational and Applied Mathematics, 150, 87-108. <u>https://doi.org/10.1016/S0377-0427(02)00566-6</u>
- [14] Kessler, D., Nochetto, R.H. and Schmidt, A. (2004) A Posteriori Error Control for the Allen-Cahn Problem: Circumventing Gronwall's Inequality. ESAIM: Mathematical Modelling and Numerical Analysis, 38, 129-142.

https://doi.org/10.1051/m2an:2004006

- [15] Canuto, C., Hussaini, M.Y., Quarteroni, A., et al. (2007) Spectral Methods: Fundamentals in Single Domains. Springer Science & Business Media, Berlin. <u>https://doi.org/10.1007/978-3-540-30726-6</u>
- [16] Zhang, J. and Du, Q. (2009) Numerical Studies of Discrete Approximations to the Allen-Cahn Equation in the Sharp Interface Limit. SIAM Journal on Scientific Computing, 31, 3042-3063. <u>https://doi.org/10.1137/080738398</u>
- [17] Eyre, D.J. (1998) Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation. MRS Online Proceedings Library (OPL), 529. <u>https://doi.org/10.1557/PROC-529-39</u>
- [18] Du, Q. and Nicolaides, R.A. (1991) Numerical Analysis of a Continuum Model of Phase Transition. SIAM Journal on Numerical Analysis, 28, 1310-1322. <u>https://doi.org/10.1137/0728069</u>
- [19] An, J., Shen, J. and Zhang, Z. (2018) The Spectral-Galerkin Approximation of Nonlinear Eigenvalue Problems. Applied Numerical Mathematics, 131, 1-15. <u>https://doi.org/10.1016/j.apnum.2018.04.012</u>