Ozone and Its Affecting Factors in the Subtropical Bamboo Forest

Jianhui Bai

Laboratory for Middle Atmosphere Layer and Globe Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing Email: bjh@mail.iap.ac.cn

Received: Jul. 22nd, 2017; accepted: Aug. 8th, 2017; published: Aug. 15th, 2017

Abstract

During July 2012-January 2013, integrated measurements of biogenic volatile organic compounds (BVOCs), O₃ and solar radiation at a subtropical bamboo forest, Zhejiang province, were carried out. Based on PAR energy balance and empirical models of isoprene and monoterpene emissions at canopy scale, O_3 empirical models considering the relationships between O_3 and isoprene and O_3 and monoterpenes, respectively, were developed. O_3 diurnal variation and mean value were better simulated by O_3 empirical models. The validation of O_3 empirical models was made, which showed that it can capture O_3 variation characteristics. A sensitivity study of the response of O_3 to changes in its controlling factors (*i.e.*, isoprene or monoterpenes, PAR, water vapor and S/O-scattering factor, ratio of solar scattering radiation to solar global radiation) showed that O₃ was most sensitive to PAR, and more sensitive to water vapor, isoprene emission and S/Q, for O₃ empirical model considering the relationship of O_3 with isoprene emission; O_3 was also most sensitive to PAR, and more sensitive to water vapor, S/Q and monoterpene emissions, for O_3 empirical model considering the relationship of O_3 with monoterpene emissions. The responses of O_3 to changes of all controlling factors were nonlinear. The sensitivity studies exhibited good agreements with the observations, and improved our understanding of chemical and photochemical mechanisms associated with O₃ and BVOCs. Some suggestions in controlling future high O₃ pollution were put forwarded, e.g., controlling emissions of Human-induced BVOC emissions, anthropogenic volatile organic compound emissions, and NO_x and SO₂ emissions.

Keywords

Ozone Pollution, Volatile Organic Compounds, Nonlinear, Chemical and Photochemical Reaction Mechanism

亚热带竹林地区的臭氧及其影响因子

白建辉

中国科学院大气物理研究所中层大气与全球环境探测开放实验室,北京

文章引用: 白建辉. 亚热带竹林地区的臭氧及其影响因子[J]. 地球科学前沿, 2017, 7(4): 536-551. DOI: 10.12677/ag.2017.74055

Email: bjh@mail.iap.ac.cn

收稿日期: 2017年7月22日; 录用日期: 2017年8月8日; 发布日期: 2017年8月15日

摘要

2012年7月至2013年1月,在我国浙江省亚热带竹林开展了挥发性有机物(BVOCs)排放、O₃、太阳辐射、 气象参数等的综合测量。基于PAR能量平衡原理和冠层尺度异戊二烯和单萜烯排放经验模式,建立了考 虑O₃与异戊二烯和O₃与单萜烯关系的O₃经验模式,该模式对于O₃日变化和平均值有较好的模拟。对经验 模式进行了检验,结果表明它可以较好地捕捉O₃的变化特征。利用经验模式计算了O₃对各个因子(异戊 二烯或单萜烯、PAR、水汽、S/Q-散射因子,散射辐射/总辐射)变化的敏感性:对于O₃与异戊二烯关系 的O₃经验模式,O₃对PAR的变化最敏感,其次是水汽因子,再次是异戊二烯;最后是S/Q;对于O₃与单 萜烯关系的O₃经验模式,O₃对PAR的变化最敏感,其次是水汽和S/Q因子,最后是单萜烯;O₃对各因子 变化的响应均是非线性的。敏感性研究给出了与实测数据较为一致的结果,增加了我们对于O₃、BVOCs 化学和光化学机制的理解和认识。基于测量和敏感性研究,提出未来控制高浓度O₃污染的一些建议:控 制人为原因引起的BVOCs排放、人为源挥发性有机物排放、以及NO_x和SO₂排放等。

关键词

臭氧污染,挥发性有机物,非线性,化学和光化学反应机制

Copyright © 2017 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

CC O Open Access

1. 引言

臭氧(O₃)是大气中一种重要的氧化剂,具有高度的化学活性,因此,在大气化学和光化学反应中起 着重要作用[1] [2]。其产生主要与挥发性有机物特别是生物挥发性有机物(BVOCs)、氮氧化物(NO_x)等物 质之间的化学和光化学反应密切相关。实际大气条件下,BVOC 的氧化或者参与大气中化学和光化学反 应将生成粒径较小的颗粒物,即二次有机气溶胶(SOA) [3]。森林为BVOCs 重要的排放源[4],研究森林 地区 O₃ 以及 O₃ 与 BVOCs 以及其他因子之间的相互关系尤为重要,它将有助于我们全面和深入地了解大 气中 O₃ 的产生机制和变化规律。研究臭氧及其影响因子之间的关系,大多采用对实测数据的统计分析, 进而研究臭氧与其前体物(NO_x、CO、SO₂、VOCs 等)、太阳辐射、气象因素(温湿度、风、天气状况)等 之间的关系[5]-[12];或者利用化学模式(例如 WRF-Chem 模式)模拟 O₃ [2],研究 O₃变化以及 O₃ 与其影 响因子的关系和机制等。本文依据对多种实测数据综合分析的基础上,发展 O₃ 的经验计算模型,进而定 量地探索和研究 O₃ 的化学和光化学规律;并主要介绍在我国亚热带竹林 O₃ 和 BVOCs 的初步研究结果, 包括 O₃ 经验模式的建立与检验、敏感性试验,O₃ 与其影响因子相互关系和化学与光化学机制的探讨、控 制高浓度 O₃ 污染的建议等。

2. 测量简介

选择我国亚热带地区浙江省临安市太湖源镇(30°18′N, 119°34′E, 185 m)开展综合实验。样地雷竹林

(*Phyllostachys violascens*)建约 10 年,面积 5 万亩,群落高度 4.5 m,以 2、3 年生竹为主,总盖度 80%, 密度每亩 800~1000 株。样地周围竹林是优势植物,其他树种、灌木、草本很少,为笋用经济林。样地周围以红壤为主,周边村庄没有大型厂矿。全年降水量 1600 mm,年平均气温 16°C [13]。

BVOC 通量测量仪器(REA 系统)安装于雷竹林观测塔 16 m 处,包括采样器、三维超声风速仪、数据 采集器等。根据三维超声风速仪所测垂直风速的大小和方向,空气样品由采样泵分别抽入"上"、"下" 两个不锈钢采样管,所采气体样品包括一对"上"和"下"样品、间或一些"中间"及空白样品。采样 时间为半小时。气体样品采集包括:1)每日 5 次采样、间隔 3 小时;2)每日中午前后为主、兼顾其他时 段。采样一般选择在无雨时段。实验期间采集 115 个样品,样品由美国国家大气研究中心分析,分析方 法和实验情况等详见文献[13]。2012 年 7 月 7 日至 2013 年 1 月 19 日,测量了太阳辐射(总辐射、直接辐 射、可见光辐射、UV-紫外辐射、PAR等)及温湿度参数[14]。辐射仪器安装于楼顶,周围无遮蔽,每日 维护和检查该系统。臭氧测量使用臭氧测量仪(Model 205,美国 2B 公司),该仪器放于与 REA 同高度处, 自 2012 年 9 月 25 开始测量。该仪器准确度为 1.0 ppb 或者 2% (10 秒平均值),分辨率为 0.1 ppb。采样时 段为: 2012 年 7 月 7 日~7 月 13 日(A)、8 月 20 日~8 月 26 日(B)、9 月 25 日~10 月 1 日(C)、10 月 28 日~11 月 5 日(D)、2013 年 1 月 18 日~19 日(E)。

BVOC 排放通量(mg·m⁻²·h⁻¹)计算方法为[13]:

$$F_i = b\sigma_{\rm w} \left(C_{\rm up} - C_{\rm down} \right) \tag{1}$$

σ_w为垂直风速标准偏差, b 为经验系数, C_{up}和 C_{down}分别为上、下采样管中某一成分的浓度。雷竹林排放 BVOC 的主要成分包括异戊二烯、α 蒎烯、倍半萜烯 - 长叶烯和柏木烯等。在 A、B、C 时段,异戊二 烯排放占总排放的 99.1%,范围为 94.9% (9 月)~99.5% (7 月); α 蒎烯占总排放的 0.8%; 倍半萜烯所占比例非常小[13]。

3. 臭氧经验模式

3.1. O3 与异戊二烯关系之 O3 经验模式

基于 PAR 能量平衡原理,在亚热带竹林 BVOCs 排放模式的基础上增加臭氧项来发展 O₃的计算方法。 首先介绍 BVOCs 排放经验模式[13]。

森林冠层界面处的 PAR 包括: 1) 异戊二烯(或单萜烯)对 PAR 的利用或衰减(称为异戊二烯项或单萜 烯项),用 e^{-k,Em} 表示, k_1 是衰减系数,对于异戊二烯和单萜烯均假定为单位 1(m²·mg⁻¹); E 为异戊二烯或 单萜烯排放通量(mg·m⁻²·h⁻¹);计算时将异戊二烯项的指数部分乘以 0.1;采样时间 t = 0.5 h; m 为大气质 量(无量纲,下同)。异戊二烯和单萜烯在可见光波段没有吸收,但它们与 OH 自由基及其他 VOC 成分、 O₃等在化学和光化学过程将利用 PAR 能量,或者说在它们氧化为其他气液固(如 SOA)物质的过程中,有 能量利用和传递[13]。可见光波段 OH 自由基的来源主要有[13]: NO₂吸收可见光辐射(>420 nm)转为激发 态 NO₂^{*}, NO₂^{*} 与 H₂O 的反应 - 对流层 OH 的一个重要来源;甲基过氧化氢(CH₃OOH)吸收 365~640 nm 辐 射产生 OH。为描述异戊二烯(或单萜烯)在化学和光化学过程对 PAR 能量的利用或衰减,依据比尔定律 客观表达。其他气体如单萜烯(或异戊二烯)等的能量作用通过 OH 的桥梁作用表达于光化学项之中[14] [15]。2) 大气中各种物质(气液固相)通过 OH 自由基在化学和光化学反应中对 PAR 的吸收与利用(称为光 化学项;对异戊二烯而言,该项不包括异戊二烯的作用;同理,对于单萜烯亦然)由 Ae^{4wm} 描述, e^{-tWm}=1- $\Delta S/I_o$,太阳常数 $I_o = 1367$ W·m⁻²; Z 为太阳天项角(度); $\Delta S = 0.172 (mW \times 0.1 \times t)^{0.303}$ 为整层大 气吸收太阳辐射通量密度值(cal·cm⁻²·min⁻¹, 1cal·cm⁻²·min⁻¹ = 696.7 W·m⁻²), W 为整层大气水汽含量(W = 0.21E), E 为地面水汽压(hPa),采样时间 t = 30 (min), 0.1 为经验系数。关于光化学项意义和作用的讨论 可参见文献[14] [15]。3) 大气中气液固相物质对 PAR 的散射衰减、大气中物质和地表等对 PAR 的多次 反射和散射作用(称为散射项),用 e^{-s/Q} 表示,*S*、*Q* 分别为散射辐射和总辐射(W·m⁻²)。经验模式中辐射 量及其他量均取采样时段的累计值,大气质量 *m* 取采样时段中间时刻之值。

BVOC 排放经验模型基于捕捉和描述大多数天气状况下的普遍规律,暂不考虑测量误差较大、出现频率较小的情形,故剔除某些数据:1) 排放通量大于 2σ (标准偏差);2) PAR 半小时累计值<1.33 mol·m⁻² (其光量子通量密度为 736.47 μmol·m⁻²·s⁻¹);3) S/Q > 0.94。得到各种天气数据 n = 12 组(n 为样本数)。此 BVOC 经验模型基于已有算法[14],华北地区 PAR 算法、草地和森林异戊二烯排放算法、长白山单萜烯 在光化学中对 PAR 利用的描述,发展并获得了真实大气条件(包括晴天和云天),冠层上水平面 PAR 与异 戊二烯、光化学、散射项间的定量关系:

$$PAR = A_{1}'e^{-k_{1}Etm}\cos Z + A_{2}'e^{-kWm}\cos Z + A_{3}'e^{-S/Q} + A_{0}'$$
(2)

式中 A', 、 A', 、 A', 、 A', 分别为系数和常数。因而异戊二烯排放经验模型为:

$$e^{-k_1 E t m} \cos Z = A_1'' P A R + A_2'' e^{-k W m} \cos Z + A_3'' e^{-S/Q} + A_0''$$
(3)

计算表明,大部分排放通量的计算值与测量值较为接近,其计算值与测量值的平均值分别为 3.345、 3.359 mg·m⁻²·h⁻¹,相对偏差为 0.42% [13]。

因此,在竹林 BVOCs 经验模式之基础上增加臭氧项来发展 O₃的计算方法以及参照臭氧与氮氧化物 之经验模型[16],以全面研究 O₃与 BVOCs 之间的化学和光化学关系。考虑冠层上水平面 O₃与异戊二烯 排放及 PAR、光化学和散射因子之间关系的经验模式为:

$$e^{-k_2 O_3 tm} \cos Z = A_1 e^{-k_1 E tm} \cos Z + A_2 PAR + A_3 e^{-kWm} \cos Z + A_4 e^{-S/Q} + A_0$$
(4)

臭氧项($e^{-k_2O_3m}$)中, k_2 为 O₃在 PAR 波段的吸收系数(0.053 × 10⁵ Pa⁻¹·cm⁻¹) [16], t = 0.5 (h), m 为大 气质量,实际计算中,该指数项乘以系数 0.1。在统一处理 O₃与异戊二烯测量数据时,O₃数据处理标准 略放宽为:剔除太阳高度角<30°和 S/Q > 0.5,以获得尽量多的 O₃数据建立 O₃经验算法。最后获得数据 15 组。通过对这些综合测量数据的统计分析,确定了公式(4)中的 A₁、A₂、A₃、A₄、A₀ (分别为 1.378、0.351、 -1.874、-0.013、0.013)。O₃ 项和其他 4 项间的可决系数 $r^2 = 0.995$ 。O₃ 计算值与测量值相对偏差 ($\delta = |y_{cal} - y_{obs}| \times 100/|y_{obs}|$)的平均值($\overline{\delta}$)为 4.28%,最大值为 10.55%,均方差 (NMSE = $(y_{cal} - y_{obs})^2 / (\overline{y}_{cal} \times \overline{y}_{obs})$)为 0.018。计算表明,大部分的计算值与测量值较为接近(图 1),O₃ 计 算与测量的平均值分别为 55.30、55.31 ppb,相对偏差为 0.03%。

为检验 O₃经验算法,选取大于 1 倍标准差的 O₃实验数据(*n* = 32)来验证,计算值与测量值的对比见 图 2 (半小时值)、图 3 (日变化的平均值-实验期间同一时间段的平均值)。总体而言,半小时和日变化的计 算值与测量值比较一致,计算值普遍大于测量值。对于半小时和日平均的模拟,计算值与测量值分别为 63.08 和 54.70,60.96 和 51.09 ppb,它们的相对偏差分别为 29.8%、34.6%。对于日平均的模拟,样本数 较小时段(如 *n* = 1 的 8:30、9:00、9:30)的计算偏差均大于其他所有的计算偏差,剔除这 3 个样本数较小 的数据后,日平均模拟的计算值与测量值分别为 62.18 和 57.79 ppb,二者相对偏差降为 16.1%,即 O₃经 验模式总体上可以较好地捕捉 O₃ 的日变化。需要提及一点:BVOCs 的测量误差一般为 25%或 30% [17] [18]。因此,对于 O₃ 的模拟和检验结果比较合理、可以接受。

3.2. O3与单萜烯关系之O3经验模式

同理,发展了考虑 O₃与单萜烯(仅为书写方便,本文将α蒎烯、长叶烯和柏木烯等记为单萜烯)排放 关系的 O₃经验模式(n = 15,单萜烯的指数项不乘系数 0.1)。其对应项的系数分别为: 0.942、0.385、-1.456、

Figure 2. O_3 concentration calculated vs observed in a subtropical bamboo forest (n = 32) 图 2. 亚热带竹林臭氧的计算值与测量值 (n = 32)

Figure 3. O_3 diurnal concentration calculated vs observed in a subtropical bamboo forest (n = 32) 图 3. 亚热带竹林臭氧日变化的计算值与测量值(n = 32)

同样,选取大于1倍标准差的实验数据(n = 32)来检验O₃经验算法。计算值与测量值的对比结果见图5(半小时值)、图6(日变化平均值)。半小时和日变化的计算值与测量值比较一致,计算值普遍大于测量值。 对于半小时和日平均的模拟,计算值与测量值分别为59.91和54.70,57.33和51.08 ppb,它们的相对偏 差分别为25.2%、24.0%。类似地,对于日平均的模拟,样本数较小时段(如 n = 1 的 8:30、9:00、9:30)的 计算偏差均大于其他所有的计算偏差,剔除这3个样本数较小的数据后,日平均模拟的计算值与测量值 分别为60.32和57.79 ppb,二者的相对偏差为9.9%。因此,O₃与单萜烯关系之经验模式总体上也可以较 好地捕捉O₃的日变化及其平均值,而且比O₃与异戊二烯关系之经验模式模拟效果要好一些。

Figure 4. O₃ concentration calculated vs observed in a subtropical bamboo forest 图 4. 亚热带竹林臭氧的计算值与测量值

Figure 6. O₃ diurnal concentration calculated vs observed in a subtropical bamboo forest (n = 32) 图 6. 亚热带竹林臭氧日变化的计算值与测量值(n = 32)

3.3. 敏感性试验

影响 O₃变化也即化学和光化学过程的因素有很多,包括辐射、BVOCs、OH 自由基、温湿度等。臭氧与其各个影响因子之间的关系是怎样的?在未来大气环境发生变化之时,O₃将如何变化?因此,了解和研究 O₃与其影响因子之间的相互关系非常重要和迫切。基于 O₃与异戊二烯、O₃与单萜烯之间的能量关系,研究了实际大气条件下,O₃与其影响因子(BVOCs 排放、PAR、吸收和散射因子)之间的敏感性。

1) O3 与异戊二烯排放、PAR、吸收和散射因子的敏感性

利用建立 O₃与异戊二烯关系之 O₃经验模式时使用的数据(*n* = 15),计算了实际大气环境下,某一因 子发生变化而其他因子保持原值时 O₃的变化率(%)和变化值(ppb)(图 7)。当影响 O₃的某一因子增加或减 少时,1)所对应的 O₃变化和变化率是非线性的,特别是某一因子变化率(如 PAR)较大时,将导致 O₃较 大的变化值和变化率;2)在某一因子变化时,O₃对 PAR 的变化最敏感,而且远远高于其他所有因子 – 量级上的差别,其次是水汽因子,然后是异戊二烯排放,最后是 S/Q 因子。具体而言,单独一个因子如 PAR 或水汽、异戊二烯、S/Q 等增加 40%时(表 1),将分别导致 O₃的变化为: -199.2%(-103.1 ppb)、-20.5% (-10.6 ppb)、+3.7%(2.3 ppb) - 情形 a、-1.2%(-0.6 ppb);仔细分析 O₃随异戊二烯的变化,发现其中包含 O₃的正和负变化和变化率,即情形 b和 c:对应 O₃变化率和变化值的平均值分别为:5.0%(3.2 ppb)和-0.2% (-0.1 ppb),它们所对应的 PAR、UV、温度、相对湿度分别为,情形 b: 20.7 W·m⁻²,1094.8 µmol·m⁻²·s⁻¹, 23.1°C,36.8%,情形 c:18.9 W·m⁻²,1018.3 µmol·m⁻²·s⁻¹,12.5°C,56.8%,情形 b和 c 的样本数分别为 11 和 4,占比例为 73.3%和 26.7%;3)某一因子同等的增加率和减少率,造成 O₃变化显著不同,一般是 某一因子的减少比其增加更能引起 O₃较大的变化及变化率(仅异戊二烯例外,略偏小或相近);

2) O3 与单萜烯排放、PAR、吸收和散射因子的敏感性

同样,利用建立 O₃与单萜烯关系之 O₃经验模式时使用的数据(n = 15),计算了实际大气环境下,某一因子发生变化而其他因子保持原值时 O₃的变化率(%)和变化值(ppb)(图 8)。当影响 O₃的某一因子增加或减少时,1)所对应的 O₃变化和变化率也是非线性的,特别是某一因子变化率较大之时,将导致 O₃较大的变化值和变化率;2)在某一因子变化时,O₃也是对 PAR 变化最敏感,且远远高于其他所有因子,

Figure 7. (a) O_3 change with the change of isoprene emission (%), while other parameters keep at their original states (a, b, c denote the averages of all, positive and negative changing rates (%) or changes (ppb), respectively). (b) O_3 change with the change of PAR (%), while other parameters keep at their original states. (c) O_3 change with the change of water vapor (%), while other parameters keep at their original states. (d) O_3 change with the change of S/Q (%), while other parameters keep at their original states.

图 7. (a) O₃随异戊二烯排放变化的变化,其他参数保持原值(abc分别表示所有、正值和负值 O₃变化或变化率之平均)。 (b) O₃随 PAR 变化的变化,其他参数保持原值。(c) O₃随水汽变化的变化率(%),其他参数保持原值。(d) O₃随 S/Q 变化的变化率(%),其他参数保持原值

Figure 8. (a) O_3 change with the change of monoterpene emissions (%), while other parameters keep at their original states (a, b, c denote the averages of all, positive and negative changing rates (%) or changes (ppb), respectively). (b) O_3 change with the change of PAR (%), while other parameters keep at their original state. (c) O_3 change with the change of water vapor (%), while other parameters keep at their original states. (d) O_3 change with the change of S/Q (%), while other parameters keep at their original states.

图 8. (a) O_3 随单萜烯排放变化的变化,其他参数保持原值(abc 分别表示所有、正值和负值 O_3 变化或变化率之平均)。 (b) O_3 随 PAR 变化的变化,其他参数保持原值。(c) O_3 随水汽变化的变化,其他参数保持原值。(d) O_3 随 S/Q 变化的 变化,其他参数保持原值 同样是量级上的差别,其次是 S/Q 因子,然后是水汽,最后是单萜烯排放。例如,单独一个因子如 PAR 或 S/Q、水汽、单萜烯等增加 40%时(表 2),将分别导致 O₃的变化为:-215.0% (-111.1 ppb)、-30.7% (-16.0 ppb)、+16.0% (8.3 ppb)、+0.5% (0.6 ppb);详细分析 O₃随单萜烯的变化,同样发现其中也包含 O₃的正和 负变化及其变化率,即情形 b 和 c:对应 O₃变化率和变化值的平均值分别为: 3.0% (2.0 ppb)和-3.2% (-1.4 ppb),它们所对应的 UV、PAR、温度、相对湿度分别为,情形 b: 20.9 W·m⁻², 1120.7 µmol·m⁻²·s⁻¹, 21.0°C, 38.8%,情形 c: 19.1 W·m⁻², 1004.9 µmol·m⁻²·s⁻¹, 19.1°C, 47.1%,情形 b 和 c 的样本数分别为 10 和 5,占比例为 66.7%和 33.3%; 3) 某一因子同等的增加率和减少率同样引起 O₃变化的显著差别,一般是某一 因子的减少比其增加更能引起 O₃较大的变化和变化率(仅仅单萜烯略有例外,略偏小或相近)。

Table 1. (a) Ozone changing rates (%) caused by the changes of one factor at 40%, with other factors kept at their originally levels under realistic atmospheric conditions (O_3 empirical model considering O_3 and isoprene relationship, a, b, c denotes the averages of all, positive and negative values, respectively). (b) Ozone changes (ppb) caused by the changes of one factor at 40%, with other factors kept at their originally levels under realistic atmospheric conditions (O_3 empirical model considering O_3 and isoprene relationship, a, b, c denotes the averages of all, positive and negative values, respectively). (b) Ozone changes (ppb) caused by the changes of one factor at 40%, with other factors kept at their originally levels under realistic atmospheric conditions (O_3 empirical model considering O_3 and isoprene relationship, a, b, c denotes the averages of all, positive and negative values, respectively)

表 1. (a) 某一因子变化 40%时 O_3 的变化率(%) (O_3 与异戊二烯关系之经验模式, a、b、c 分别代表所有、正、负值的 平均情形)。(b) 某一因子变化 40%时 O_3 的变化(ppb) (O_3 与异戊二烯关系之经验模式, a、b、c 分别代表所有、正、 负值的平均情形)

....

					(a)							
+40%						-40%						
Isoprene		DAD	Б	8/0	Isoprene			DAD	F	6/0		
а	b	с	- PAR	E	S/Q	a	b	с	- PAK	E	S/Q	
3.7	5.0	-0.2	-199.2	-20.5	-1.2	-3.6	-5.0	0.2	337.4	28.8	1.3	
					(b)							
	+40%								10%			
	Isoprene		DAD	E C/	5/0	Isoprene			DAD	Б	5/0	
а	b	с	- FAK	E	3/Q	а	b	с	- rAK	Ľ	S/Q	
2.3	3.2	-0.1	-103.1	-10.6	-0.6	-2.3	-3.1	0.1	175.5	14.9	0.7	
2.3	5.2	-0.1	-103.1	-10.6	-0.6	-2.5	-3.1	0.1	1/5.5	14.9	0.7	

Table 2. (a) Same as Table 1(a), but for O_3 empirical model considering O_3 and monoterpene relationships. (b) Same as Table 1(b), but for O_3 empirical model considering O_3 and monoterpene relationships

(a)

表 2. (a) 同表 1(a) (O3 与单砧烯关系之经验模式)。	(b) 同表 1(b) (O ₃ 与单萜烯关系之经验模式)
---	--

					()							
+40%						-40%						
Monoterpenes			DAD	F	6/0	Monoterpenes			DAD	F	C/O	
а	b	с	- PAK	E	S/Q	а	b	с	– PAK	E	S/Q	
0.5	3.0	-3.2	-215.0	-16.0	-30.7	-0.5	-3.0	3.2	386.5	22.2	38.5	
					(b)							
	+40% -40%											
Monoterpenes				F	C /O	Monoterpenes			DAD		C/O	
а	b	с	- PAK	E	S/Q	а	b	с	- PAR	E	S/Q	
0.6	2.0	-1.4	-111.1	-8.3	-16.0	-0.6	-2.0	1.4	200.8	11.5	20.0	
· · · · · · · · · · · · · · · · · · ·												

4. 讨论

O₃ 与 BVOCs、氮氧化物(NO_x)的在化学和光化学方面的关系非常复杂,包括众所周知的 EKMA (Emipirical kinetic modeling approach)曲线。但是,O₃的在化学和光化学过程,除了和 BVOCs、NO_x有关 外,还与太阳辐射(UV、PAR等)、温度、水汽、气溶胶、云等都有关系[1][5][16][17][19]。例如,BVOCs 可以氧化为二次有机气溶胶(SOA)、对云的凝结核和云的形成都有重要作用[3][20]。因此,我们需要考 虑涉及 O₃ 化学和光化学过程多方面的因素。基于对我国亚热带竹林 O₃、BVOCs、太阳辐射等综合测量 和 O₃ 经验模型,开展 O₃ 与 BVOCs 有关的化学和光化学机制方面的研究,将有助于提高我们在这一方面 的深入理解和全面认识,并为制定高浓度 O₃ 污染控制方法提供科学依据。天然的、实际大气环境下的实 验数据和研究结果,将更具有真实性、客观性、实用性。

虽然经验模式建立时采用的实验数据较少(n = 15),但是,之后采用1倍标准偏差实验数据的验证, 表明O₃经验模型可以较好地捕捉到O₃的变化特征以及平均状况。另外,BVOCs 排放经验模型在我国长 白山温带森林、临安亚热带竹林均获得较好的BVOCs 排放模拟,虽然经验模型建立时使用的实验数据都 不是很多,但均采用了类似的、较为严格的数据标准[13][18][19][21],从而得到较为满意的模拟。因此, 建立和发展经验模型时,数据的质量要远远重要于数据的数量,其他相关内容可参考文献[13];本文研究 表明,基于长白山温带森林、临安亚热带竹林、泰和亚热带人工林BVOCs 排放经验模型[15][18][21]基 础上发展而来的O₃经验模型可以用于研究O₃及其与BVOCs 有关的化学和光化学规律和机制。

敏感性试验表明(图 7、图 8、表 1、表 2),对于 O3与异戊二烯和 O3与单萜烯关系之经验模式而言, 1) O3随 PAR 的增加(或减少)均减少(或增加)(包括变化率和变化值,下同),它揭示了当其他参数保持实 际大气原来水平的前提下,O3随 PAR 增加(或减少)而光解增加(或减少)的过程;O3与异戊二烯关系对 PAR 的敏感性(如变化 40%情形)要小于 O3与单萜烯关系对 PAR 的敏感性。2) O3随异戊二烯排放的增加均非 线性变化,对于绝大多数情形 b (占约 73%)而言, O₃随异戊二烯排放的增加而增加,它们对应着较好的 天气条件——较高的太阳辐射(平均值 UV = 21 W·m⁻²、PAR = 1094 μmol·m⁻²·s⁻¹)、较高的温度(21°C),适 宜的湿度(37%);但也表现出了 O3 随异戊二烯排放增加而下降的现象,此时对应着略差的天气条件-较低 的辐射(UV = 19 W·m⁻²、PAR = 1018 μmol·m⁻²·s⁻¹)、较低的温度(13°C),相对高的湿度(57%)。因此,研 究表明,不同的辐射和大气条件导致了异戊二烯化学和光化学过程产生 O3的显著差别,揭示了异戊二烯 和 O₃ 光化学规律的极度复杂性。15 组数据总平均的结果则展示出 O₃ 随异戊二烯排放的增加而增加,但 是,需要注意的是,总平均的结果掩盖了大气中很多真实的过程。同样,O3随单萜烯排放变化也表现出 与异戊二烯类似的现象。O₄与异戊二烯关系的敏感性和O₃与单萜烯关系的敏感性非常复杂,例如,在异 戊二烯或单萜烯增加 40%时,其所导致 O3增加情形,O3与异戊二烯关系对异戊二烯的敏感性大于 O3与 单萜烯关系对单萜烯的敏感性;而在其所导致 O3下降情形,O3与异戊二烯关系对异戊二烯的敏感性要小 于O3与单萜烯关系对单萜烯的敏感性。因此,研究O3和BVOCs化学和光化学方面的规律和机制,需要 注重详细的反应过程而非平均状态。O3随其他3个因子的敏感性试验,都表现出同时为正或为负的变化 和变化率,而没有表现出与异戊二烯和单萜烯一样(正负兼有)的结果。O₃经验模型揭示出了不同辐射和 大气条件下 O3 与 BVOCs 之间不同的规律,从光化学机制方面对于竹林地区的观测现象给出了解释。

竹林实地的测量结果(2012 年 9 月~2013 年 1 月)表明,在所有天气条件(晴天和有云天气)下,O₃与异 戊二烯、O₃与单萜烯(α蒎烯 + 倍半萜烯,仅限本文讨论方便之用)排放之间的相关系数都很小,分别为0.271, 0.210 (n = 59);而在较好天气条件,上述对应的相关系数则分别增大为0.556,0.302 (n = 14) [17]。上面 关于O₃与异戊二烯和单萜烯敏感性试验结果与测量结果有较好的吻合,也即从光化学机理上较好地解释 了实验结果——较好天气和大多数情况下,O₃与 BVOCs 的同步增长或下降。这也表明基于能量关系的 O3经验模型是合理的。

对于 O_3 与异戊二烯和 O_3 与单萜烯的经验关系中, O_3 随水汽压的增加均减小,它揭示了水汽增加,导致 OH 自由基的增加(如 NO₂ 吸收可见光辐射(波长>420 nm)转为激发态 NO₂^{*}, NO₂^{*} 与 H₂O 反应是对流 层 OH 的一个重要来源,甲基过氧化氢(CH₃OOH)吸收 365~640 nm 辐射产生 OH) [13],进而导致 O_3 减少 的化学和光化学机制。对比 O_3 对水汽压的敏感性(如水汽压增加 40%),考虑 O_3 与异戊二烯关系的敏感性 要大于 O_3 与单萜烯关系的敏感性。关于 O_3 敏感性中温度对于 O_3 及其变化的作用和影响,可以从 O_3 与吸收因子(水汽压, E)的敏感性而得到,这源于亚热带竹林地面水汽压与温度(T)、湿度(RH)之间较好的线 性关系, T = -0.355RH + 1.14E + 24.66 [18]。

对于 O₃ 与异戊二烯和 O₃ 与单萜烯的经验关系中, O₃ 随散射因子(S/Q)的增加均减少, 它表明大气中 总物质(气液固相, 表示为 GLPs)含量的增加对应着 O₃ 的减少, 其揭示的机制是: 在大气化学和光化学反 应中,反应物 O₃ 的减少将伴随或带来生成物 - 颗粒物以及其他气、液相态物质的增加,以及大气(柱)中 总物质的增多; 另一方面,大气中总物质减少则对应或伴随着 O₃ 增加(图 7、图 8),它反映了的机制为仅 仅单纯减少颗粒物将带来 O₃ 的升高。因此,根据这一结果,针对我们目前颗粒物、特别是细颗粒物(或 其他名词 PM_{2.5}、二次有机气溶胶-SOA 等)严重污染的情形,如果仅仅降低颗粒物一次排放和二次生成, 还远远达不到控制空气污染的目的,因为,它将伴随或引起高浓度的 O₃ 污染。众所周知,高浓度的 O₃ 对于人的呼吸系统、神经、皮肤等具有更严重的伤害。鉴于 O₃ 高度的氧化性,颗粒物污染和 O₃ 污染很 多时候同时发生,这一现象已经清晰地表现在华北大气本底的兴隆地区[22]——兴隆近 10 年测量数据显 示了 O₃和 PM_{2.5}的增长(尽管 NO_x和 SO₂在下降),即大自然已经向我们提出了警示。所以,应该将控制 O₃ 污染和控制颗粒物污染一并考虑,即严控一次气体污染物(NO_x和 SO₂等)、各种人为源挥发性有机物 (AVOCs)以及人为因素 BVOCs 的排放[5] [16] [19] [22],其依据的化学和光化学机制为:

AVOCs + BVOCs + OH + 其他GLPs(NO₂,SO₂,…)

$$\xrightarrow{UV,VIS}$$
 新GLPs(O₃,PAN,PM_{2.5},…) (5)

式中,VIS为可见光辐射,PAN为过氧乙酰基硝酸酯(光化学烟雾中污染物之一)。

O₃对散射因子 S/Q 的敏感性方面:O₃与单萜烯关系的敏感性远远大于O₃与异戊二烯的关系敏感性, 它反映了异戊二烯或单萜烯与散射因子(或气溶胶)相互关系中作用的差别。需要提及一点,O₃ 经验模型 是一种能量平衡关系,而且其关系是双向的,即其描述的是相互作用关系。具体而言,反映了它们在参 与O₃化学和光化学反应中生成颗粒物的能力和产量:单萜烯远远大于异戊二烯,即单萜烯比异戊二烯更 利于氧化形成小粒径气溶胶(如 SOA)。这与利用竹林 BVOCs 排放经验模型得到的结果比较一致-实际大 气条件下单萜烯比异戊二烯更易氧化为 SOA [13]。相关的实验研究也有类似结果:倍半萜烯氧化为 SOA 的产率为 17%~67%,单萜烯氧化产率为 2%~23%,异戊二烯氧化产率仅为 0.9%~3% [23] [24]。

大量研究表明,受伤植物的枝、叶,剪草等将造成 BVOCs 排放的大量增加[25] [26]。对我国内蒙古 草地 BVOCs 排放的测量发现,剪草后异戊二烯和单萜烯(包括 a 蒎烯、β 蒎烯、柠檬烯、蒈烯等)的排放 比剪草前大都成倍增加(特别是中午前后),最高可达 9 倍[26]。因此,大中城市减小因人为因素导致高 BVOCs 排放的有利措施之一是将树木、草地的剪枝和修剪活动推迟到 15:00 或 16:00 之后,从而避免中 午前后高辐射与温度和高 BVOCs 排放、以及剪草后 BVOCs 排放急剧增加所导致的后期光化学过程产生 的高浓度 O₃和颗粒物。这是由于在同等的 BVOCs 变化率时,BVOCs 增加比其减少所导致 O₃的增加量 远大于 O₃的减少量(见 3.3 和后面讨论)。建议在光照较低即太阳辐射(PAR、UV等)较小、有云气体条件 下,开展上述修剪活动,其较低的辐射和较低的温度等,均不利于修剪后 O₃和颗粒物的光化学产生。研 究表明,生物质燃烧会导致 O₃和 BVOCs 的显著增加[21],因此,我们还应该加强控制生物质燃烧,包 括夏秋季节的秸秆燃烧、烟草燃烧等。

此外,在考虑城市未来规划时,建议选择种植一些无或低 BVOCs 排放的树种和草种,以减少 BVOCs 排放。有关我国无或低 BVOCs 排放树种和草种的选择,可以参考排放方面的测量结果[27] [28] [29] [30] [31]。本文提出控制 BVOCs 排放方面,主要指控制因人为因素引起的 BVOCs 排放,而非其他。研究表 明,植物对空气中的细菌具有杀菌、抗菌、抑菌的作用[32],其主要原因是各种成分的 BVOCs (芳香性的 萜烯类,醇、醛、酮、酯、醚、酚有机酸等)。因此,植物及其排放的 BVOCs 对人类和环境是有益的, 只是当它们遇到其他污染物(NO_x、SO₂等)后,通过化学和光化学过程才产生后续的各种气液固相污染物 (包括 O₃、PM_{2.5}、PAN 等),所以,我们应该清醒、深刻地认识到控制因人为因素排放的各类污染物的重 要性和迫切性,这是造成目前严重空气污染的根源所在。

本文虽然主要研究 O₃与 BVOCs 的光化学关系,通过控制和限制 BVOCs 排放来降低高浓度 O₃的生成,但它不妨我们将 O₃与 BVOCs 的光化学关系和机制推而广之,即我们更要加强控制各种来源的 AVOCs 排放,以避免高浓度 O₃污染的形成。而且,大部分的 AVOCs 都有毒性(例如苯系物、含氧有机物——醛(如甲醛)、酮、醇、醚等)严重危害人类健康、生态环境等。因此,加强对各种 AVOCs 排放源的严格管理和控制,以控制高浓度 O₃及颗粒物 PM_{2.5} 的光化学生成已势在必行[22]。

对于 O₃ 与异戊二烯和 O₃ 与单萜烯关系的 O₃ 经验模型而言,O₃ 都表现出对 PAR 最敏感的特点,它 反映了 PAR 能量在 O₃和 BVOCs 化学和光化学反应中远远高于其他因素的重要作用。另外,它们对于其 他 3 个因子敏感性的排序、变化率和变化值等均有不同,这反映了异戊二烯和单萜烯在参与 O₃ 化学和光 化学过程和机制方面的显著差异,它涉及到反应速率、氧化产率、寿命等,即表明了 BVOCs 各种成分参 与大气光化学反应中极其复杂的特性。因此,应该全面、详细地了解 O₃、BVOCs 组分以及其他成分(NO_x、 SO₂等)、太阳辐射、气象参数、气溶胶等的综合作用。初步研究表明,敏感性试验已揭示出实测结果中 反映的化学和光化学内在规律,基于 PAR 能量关系发展而来的 O₃经验模型可以较好地帮助我们深入理 解和认识 O₃和 BVOCs 有关的化学和光化学机制。

分析发现,未来实际大气或者气候变化之时,每个因子变化的初始值及变化率都将影响到未来 O₃的浓度。因此,未来要根据各个因子的实际变化情况以及初始值给出准确评价。为了解初始值对 O₃变化率和变化值的影响,在之前异戊二烯变化增加 40%和减少 40%情形,将异戊二烯排放通量初始值分别增加和减少 40%,重新计算 O₃变化(表 3)。以出现频率较多的 b 情形为例分析 O₃变化值:当异戊二烯初始值增加 40%的条件下增加 40%时,所导致 O₃的增加值(7.6 ppb)高于异戊二烯初始值减小 40%条件下减小 40%时 O₃的减少值(-5.0 ppb),二者之比为 1.5 倍;同样,对于单萜烯而言,上述的对应值则分别为 2.8 ppb, -1.2 ppb, 2.3 倍。这说明,在 BVOCs 高排放初始值的条件下,其增加带来的 O₃增加量将远大于 BVOCs 低排放初始值条件下,其减少带来的 O₃减少量。因此,控制 BVOCs 的高排放初始值,对于控制高 O₃污染具有重要价值和实际收效,另外,同样条件下,减少或控制 BVOCs 排放带来的 O₃减少效果要差于 BVOCs 排放增加带来 O₃增加效果。由此可见,控制 BVOCs 排放对于调控 O₃污染的难度所在和任务的 艰巨性。同理,可以推论,控制 AVOCs 排放对于控制 O₃污染可能也存在类似的效果,这一点还有待今 后相关研究来验证。

敏感性计算中,对于 O₃ 与异戊二烯和 O₃ 与单萜烯关系情形,当 PAR 降至 80%时,O₃ 与异戊二烯关 系中,出现 7 组无 O₃输出,O₃ 与单萜烯关系中则全部无 O₃输出;当 PAR 下降 100%时,二者均无 O₃ 输出。这意味着在各个因素都保持原值的情形下,O₃将随着 PAR 下降到一定程度时变为零或小于零,也 表明,O₃ 与 BVOCs 的化学和光化学反应对 PAR 能量的依赖性。查看 2015~2016 实验期间有夜间连续测 量的数据,发现:2015 年 11 月 8 日 17:30~11 月 9 日 6:30,O₃ 半小时平均值为-1.83 ppb (最大值和最小 值分别为-1.05,-2.15 ppb);12 月 30 日,O₃ 对应值为-0.65 (0.54,-2.20) ppb。2016 年 8 月 9 日 4:45~6:35, **Table 3.** (a) When isoprene or monoterpene original emissions adjust to +40%/-40%, ozone changing rates (%) caused by the changes of isoprene or monoterpenes at 40%/-40%, with other factors kept at their originally levels under realistic atmospheric conditions (O₃ empirical model considering O₃ and isoprene relationship or O₃ and monoterpene relationships, a, b, c denotes the averages of all, positive and negative values, respectively). (b) Same as Table 3(a), but for ozone change (ppb)

表 3. (a)	异戊二烯或单萜烯初始值增/减	,40%时 O3的变化率(%) (a	a、b、c 分别代表所有	、正、负值的平均情形)。((b) O ₃
变化值(]	ppb) (其余同 <u>表 3(a)</u>)				

(a)													
	+40%						-40%						
Isoprene Monoterpenes				Isoprene Monote				Ionoterpene	es				
а	b	с	а	b	с	а	b	с	а	b	с		
8.8	28.3	-0.8	0.5	4.0	-4.7	-5.8	-8.0	0.3	-0.4	-1.9	1.9		
					(b)								
	+40% -40%												
	Isoprene Monoterpenes							Isoprene Monoterpe					
a	b	c	a	b	c	a	b	с	a	b	c		
5.5	7.6	-0.2	0.9	2.8	-2.0	-3.6	-5.0	0.1	-0.4	-1.2	0.9		

O₃对应值为-0.99 (0.11, -1.65) ppb; 8月15日1:25~6:35, O₃对应值为0.33 (2.53, -0.72) ppb。夜间及 凌晨时段在没有辐射能量供给的情况下,O₃将逐渐消耗尽、不能通过化学和光化学过程产生。

5. 结论

基于亚热带竹林开展的 BVOCs 和 O₃综合实验、PAR 能量平衡原理,建立了 O₃经验模式,并进行 了验证,该模式可以较好地捕捉 O₃ 日变化和平均值。敏感性研究表明: O₃对 PAR 的变化最敏感; O₃对 各因子变化的响应均是非线性的; O₃ 随散射因子的增加减少,而大气中总物质减少则伴随着 O₃增加; O₃与单萜烯关系的敏感性远远大于 O₃与异戊二烯的关系敏感性。加大力度控制人为因素 BVOCs (以及 AVOCs)高排放的初始值,对于控制高浓度的 O₃ 污染将有很好的实际效果。同等变化率条件下,减少 BVOCs 排放带来 O₃减少量要差于 BVOCs 排放增加带来的 O₃增加量,因而控制人为因素 BVOCs 排放对 于降低高浓度 O₃污染是一项艰巨的任务。较好天气条件,BVOCs 排放增加将带来 O₃增加,而较差天气 条件,BVOCs 排放增加将带来 O₃减少。敏感性研究加深和扩展了关于 O₃与 BVOCs 化学和光化学机制 的理解,对于未来可能出现的高浓度 O₃污染事件,提出了一些建议——控制各种人为原因引起的 BVOCs 排放、各类 AVOCs 排放、以及 NO_x和 SO₂排放等,以从根源上彻底控制住或消除 O₃和颗粒物(包括 PM_{2.5}) 等污染。

致 谢

浙江农林大学余树全、王彬,临安太湖源镇李松良给予了很多帮助,中国科学院大气物理研究所万 晓伟、吴翼美参与部分工作,美国华盛顿州立大学 A. Guenther、2B 科技公司 A. Turnipseed、国家大气研 究中心 T. Duhl 在竹林 BVOC 研究中做了大量工作,对于他们的辛勤付出深表谢意。

基金项目

国家自然科学基金资助项目(40975082, 41275137)、中华人民共和国科技部 - 欧洲空间局合作"龙计划"3 期、4 期项目(ID10663, ID32771)、欧盟第七框架计划(FP7) MarcoPolo 项目(Grant NO. 606953).

参考文献 (References)

- [1] 白建辉, 王明星. 地面臭氧光化学过程规律的初步研究[J]. 气候与环境研究, 20016, 6(1): 91-102.
- [2] Situ, S., Guenther, A., Wang, X.M., Jiang, X.Y., Turnipseed, A., Wu, Z.Y., Bai, J.H. and Wang, X.M. (2013) Impacts of Seasonal and Regional Variability in Biogenic VOC Emissions on Surface Ozone in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics, 13, 11803-11817. <u>https://doi.org/10.5194/acp-13-11803-2013</u>
- [3] Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P. and Maenhaut, W. (2004) Formation of Secondary Organic Aerosols through Photooxidation of Isoprene. *Science*, **303**, 1173-1176. <u>https://doi.org/10.1126/science.1092805</u>
- [4] Guenther, A., Hewitt, C.N., Erickson, D., et al. (1995) A Global Model of Natural Volatile Organic Compound Emissions. Journal of Geophysical Research, 100, 8873-8892. <u>https://doi.org/10.1029/94JD02950</u>
- [5] 白建辉, 王明星, 陈辉, 徐永福, 石立庆, 孔国辉, 黄忠良, 孟泽. 地面臭氧的变化规律和计算方法的初步研究 I 紫外波段[J]. 气候与环境研究, 2002, 7(1): 49-60.
- [6] 朱毓秀,徐家骝.近地面臭氧污染过程和相关气象因子的分析[J].环境科学研究,1994,7(6):13-18.
- [7] 周秀骥. 中国地区大气臭氧变化及其对气候环境的影响(一) [M]. 北京: 气象出版社, 1996.
- [8] 张远航, 邵可声, 唐孝炎, 李金龙. 中国城市光化学烟雾污染研究[J]. 北京大学学报(自然科学版), 1998, 34(2-3): 392-400.
- [9] 丁国安, 徐晓斌, 罗超, 汤洁, 向荣彪, 颜鹏, 王木林, 李兴生. 中国大气本底条件下不同地区地面臭氧特征[J]. 气象学报, 2001, 59(1): 88-95.
- [10] 段欲晓, 徐晓峰, 张小玲. 北京地面 O3 污染特征及气象条件分析[J]. 气象科技, 2001, 29(4): 15-18.
- [11] 姚青, 孙玫玲, 刘爱霞. 天津臭氧浓度与气象因素的相关性及其预测方法[J]. 生态环境学报, 2009, 18(6): 2206-2210.
- [12] 严茹莎, 陈敏东, 高庆先, 刘婷, 胡顺星, 高文康. 北京夏季典型臭氧污染分布特征及影响因子[J]. 环境科学研究, 2013, 26(1): 43-49.
- [13] 白建辉, T. Duhl, 余树全, 王彬, 郝楠. 亚热带竹林挥发性有机物排放的模拟[J]. 生态环境学报, 2015, 24(12): 1923-1937.
- [14] 白建辉. 光合有效辐射在大气中的衰减[J]. 环境科学学报, 2010, 30(2): 302-313.
- [15] Bai, J.H. (2013) Photosynthetically Active Radiation Loss in the Atmosphere in North China. Atmospheric Pollution Research, 4, 411-419. <u>https://doi.org/10.5094/APR.2013.047</u>
- [16] 白建辉, 王庚辰, 陈辉, 徐永福, 石立庆, 黄忠良, 孔国辉, 孟泽. 地面臭氧的变化规律和计算方法的初步研究 II.可见光波段[J]. 气候与环境研究, 2002, 7(3): 311-320.
- [17] Bai, J.H., Guenther, A., Turnipseed, A., Duhl, T., Yu, S.Q. and Wang, B. (2016) Seasonal Variations in Whole-Ecosystem BVOC Emissions from a Subtropical Bamboo Plantation in China. *Atmospheric Environment*, **124**, 12-21. <u>https://doi.org/10.1016/j.atmosenv.2015.11.008</u>
- [18] Bai, J.H., Duhl, T. and Hao, N. (2016) Biogenic Volatile Compound Emissions from a Temperate Forest, China: Model Simulation. *Journal of Atmospheric Chemistry*, **73**, 29-59. <u>https://doi.org/10.1007/s10874-015-9315-3</u>
- [19] 白建辉, 王明星, J. Graham, R. G. Prinn, 孔国辉, 黄忠良. 鼎湖山地面臭氧、氮氧化物变化特征的分析[J]. 环境 科学学报, 1999, 19(3): 262-265.
- [20] 白建辉, 林凤友, 万晓伟, A. Guenther, A. Turnipseed, T. Duhl. 长白山温带森林挥发性有机物的排放通量[J]. 环 境科学学报, 2012, 32(3): 545-554.
- [21] Bai, J.H., Guenther, A., Turnipseed, A., Duhl, T. and Greenberg, J. (2017) Seasonal and Interannual Variations in Whole-Ecosystem BVOC Emissions from a Subtropical Plantation in China. *Atmospheric Environment*, 161, 176-190. <u>https://doi.org/10.1016/j.atmosenv.2017.05.002</u>
- [22] 白建辉, 吴翼美, 柴文海, 王普才, 王庚辰. 华北大气本底微量气体与颗粒物的长期变化[J]. 地球科学前沿, 2015, 5(3): 248-263.
- [23] Griffin, R.J., Cocker, D.R., Flagan, R.C., et al. (1999) Organic Aerosol Formation from the Oxidation of Biogenic Hydrocarbons. Journal of Geophysical Research, 104, 3555-3567. <u>https://doi.org/10.1029/1998JD100049</u>
- [24] Kroll, J.H., Ng, N.L., Murphy, S.M., et al. (2005) Secondary Organic Aerosol Formation from Isoprene Photooxidation under High-NOx Conditions. *Geophysical Research Letter*, **32**, L18808. <u>https://doi.org/10.1029/2005GL023637</u>
- [25] Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J.W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D. and Stockwell, W. (2000) Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A

Review. Bulletin of the American Meteorological Society, **81**, 1537-1575. https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2

- [26] 白建辉, B. Baker. 不同类型草地挥发性有机物排放特征的研究[J]. 大气科学, 2006, 30(1): 119-130.
- [27] 白建辉, 王明星, John Graham, Ronald G. Prinn. 亚热带森林非甲烷碳氢化合物的研究 II.日变化[J]. 气候与环境 研究, 2001, 6(4): 456-466.
- [28] Klinger, L.F., Li, Q.J., Guenther, A.B., Greenberg, J.P., Baker, B. and Bai, J.H. (2002) Assessment of Volatile Organic Compound Emissions from Ecosystems of China. *Journal of Geophysical Research*, **107**, 4603. <u>https://doi.org/10.1029/2001JD001076</u>
- [29] 白建辉, 王庚辰, Bradly Baker, Lee Klinger, 李庆军, 王永峰. 内蒙古草地挥发性有机物的预研究[J]. 科学技术 与工程, 2003, 3(2): 179-181.
- [30] Geron, C., Owen, S., Guenther, A., Greenberg, J., Rasmussen, R., Bai, J.H., Li, Q.J. and Baker, B. (2006) Volatile Organic Compounds from Vegetation in Southern Yunnan Province, China: Emission Rates and Some Potential Regional Implications. *Atmospheric Environment*, 40, 1759-1773. <u>https://doi.org/10.1016/j.atmosenv.2005.11.022</u>
- [31] 黄爱葵, 李楠, A. Guenther, J. Greenberg, B. Baker, M. Graessli, 白建辉. 深圳市显著排放 VOCs 的园林植物调查 与分析[J]. 环境科学, 2011, 32(12): 3555-3559.
- [32] 谢慧玲, 李树人, 阎志平, 侯桂英, 詹瑞华. 植物杀菌作用及其应用研究[J]. 河南农业大学学报, 1997, 31(4): 367-402.

Hans 汉斯

期刊投稿者将享受如下服务:

- 1. 投稿前咨询服务 (QQ、微信、邮箱皆可)
- 2. 为您匹配最合适的期刊
- 3. 24 小时以内解答您的所有疑问
- 4. 友好的在线投稿界面
- 5. 专业的同行评审
- 6. 知网检索
- 7. 全网络覆盖式推广您的研究

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>ag@hanspub.org</u>