一款应用于5G的圆极化微带相控阵列天线设计

倪 涛1,陈官韬1,伊良镛2

¹西安导航技术研究所,陕西 西安 ²西安电子科技大学电子工程学院,陕西 西安

收稿日期: 2023年9月16日; 录用日期: 2023年10月16日; 发布日期: 2023年10月25日

摘要

本文提出一种用于5G通信的圆极化微带相控阵列天线。首先,提出并设计了一款双馈点的圆极化微带天 线单元,在无限周期阵中的仿真结果表明,该阵列单元在两个主平面实现 ±30度的扫描,在3.4~3.7 GHz 频段内的反射系数S11 < -10和轴比AR < 3.5 dB。最后,设计了一款7 × 7圆极化微带阵列天线,仿真结 果表明,该阵列天线工作在3.4~3.7 GHz频段,在扫描范围内的轴比均小于3 dB,且在扫描范围内增益 变化平稳,实现了良好的圆极化扫描特性。

关键词

微带天线,圆极化,相控阵

Design of a Circularly Polarized Microstrip Phased Array for 5G Applications

Tao Ni¹, Guantao Chen¹, Liangyong Yi²

¹The Xi'an Research Institute of Navigation Technology, Xi'an Shaanxi ²School of Electronic Engineering, Xidian University, Xi'an Shaanxi

Received: Sep. 16th, 2023; accepted: Oct. 16th, 2023; published: Oct. 25th, 2023

Abstract

This article proposes a circularly polarized microstrip phased array antenna for 5G communication. Firstly, a doubly-fed circularly polarized microstrip antenna unit was proposed and designed. Simulation results in an infinite periodic array showed that the array unit achieved \pm 30 degree scanning on two main planes, with a reflection coefficient of S11 < -10 dB and the axial ratio of AR < 3.5 dB in the 3.4~3.7 GHz frequency band. Finally, a 7 × 7 microstrip array antenna was designed, and the simulation results showed that the array antenna operated in the 3.4~3.7 GHz frequency band. The axial ratio within the scanning range is less than 3dB, and the gain changes smoothly within the scanning range, achieving good circularly polarized scanning characteristics.

Keywords

Microstrip Antenna, Circularly Polarized, Phased Array

Copyright © 2023 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

1. 引言

相控阵天线多采用线极化形式,然而与线极化相比,圆极化有诸多的优点[1][2][3][4]:如圆极化可 以抑制雨雾影响、有效避免多径效应带来的衰减,同时能够减小极化失配带来的损失,而且圆极化天线 的信道容量更大,已广泛用于卫星导航[1]、移动通信[4]等领域。因此,圆极化相控阵天线在电子通信系 统会得到越来越多的应用。然而,圆极化阵列天线设计比较困难,这是由于天线单元组阵后,单元之间 的耦合往往会对轴比带宽产生较大影响。因而,如何能在相控阵天线中提出一种结构形式简单、馈电方 式简单,且具有圆极化特性的波束扫描性能的天线成为了当前的设计难点。

在文献[5]中,作者提出了一种可以有效扩展频带的堆叠微带圆极化阵列,但其波束扫描范围较窄。 在文献[6] [7]中,使用宽波束宽度单元来获得较大角度的扫描阵列。在文献[8]中,使用了一种有效的馈电 网络来实现宽角扫描电阻匹配,但当扫描角度较大时,电性能会变得更差。此外,同心阵列也可以用于波 束扫描,但其轮廓相对较高[9]。在文献[10]中,提出了一种用于 3.4~3.8 GHz 频带的基站阵列天线。该阵 列的单元采用蝴蝶形状的,可以在实现 45 度的扫描波束,但阵中单元在较大角度扫描时反射系数较差。

本文设计了一种圆极化微带相扫描控阵天线。通过加载金属解耦柱和加载缺陷地结构,有效地扩展 了微带天线单元的带宽和波束宽度。在所设计的单元的基础上,设计了一款 7 × 7 微带圆极化阵列天线。 该阵列天线工作在 3.4~3.7 GHz 频段,扫描在±30 度的轴比均小于 3 dB,且在扫描范围内增益变化比较平 稳,实现了良好的圆极化扫描特性。关于阵列设计和仿真结果的详细信息将在以下章节中介绍。

2. 天线设计

2.1. 天线单元结构与原理分析

天线的几何结构如图 1 所示。图 1(b)为下部衬底(FR4 *ε_r* = 2.65, *h*₁ = 0.8 mm)底部的一分二威尔金森功 分器。辐射贴片位于上部衬底(Rogers4003 *ε_r* = 3.55, *h*₂ = 3.5 mm)的顶部。天线的圆极化性能是由采用两个 相互垂直的输入馈电点,在空间上产生 90 度的相位差,同时为保证两馈电点的入射波幅度一致,辐射贴 片采用关于两馈电点中心线对称的结构。位于基板中间的四个金属柱可以有效降低两个端口间的隔离度, 从而进一步提高天线的圆极化性能。微带天线是由辐射元、介质层和参考地组成,微带天线的具体尺寸 可以使用以下公式进行估算,贴片宽带 *W*,即:

$$W = \frac{c}{2f} \left(\frac{\varepsilon_r + 1}{2}\right)^{-\frac{1}{2}}$$

式中, c 为光速。

辐射贴片的长度 L 一般取 $\lambda_g/2$, λ_g 为波导波长:

$$\lambda_g = \frac{c}{f\sqrt{\varepsilon_e}}$$

考虑到边缘效应的影响,实际的辐射单元长度λ。应为:

$$\lambda_{c} = \frac{c}{2f\sqrt{\varepsilon_{e}}} - 2\Delta L$$

其中,有效介电常数 ε_e ,等效辐射缝隙长度 ΔL ,计算公式如下:

$$\varepsilon_{e} = \frac{\varepsilon_{r} + 1}{2} + \frac{\varepsilon_{r} - 1}{2} \left(1 + 12\frac{h}{b} \right)^{-\frac{1}{2}}$$
$$\Delta L = 0.412h \frac{(\varepsilon_{e} + 0.3)(b/h + 0.264)}{(\varepsilon_{e} - 0.258)(b/h + 0.8)}$$

通常,介质板的厚度 h 需要满足以下公式:

$$h \leq 0.3c/2\pi f_h \sqrt{\varepsilon_r}$$

最终通过仿真优化,设计天线的具体参数为: L = 43.2 mm, W = 43.2 mm, $R_1 = 2 \text{ mm}$, $L_1 = 1.41 \text{ mm}$, $W_1 = 1.5 \text{ mm}$, $R_2 = 1.1 \text{ mm}$, $R_3 = 2.25 \text{ mm}$, $W_2 = 2.7 \text{ mm}$, $W_3 = 1.5 \text{ mm}$, $L_2 = 16 \text{ mm}$, $L_3 = 7 \text{ mm}$, $L_4 = 3 \text{ mm}$, $L_5 = 6 \text{ mm}$ 。

Figure 1. Circularly polarized microstrip antenna unit 图 1. 圆极化微带天线单元

如图 1(c)所示的是位于上部衬底采用了蚀刻缺地陷结构的地板[11],缺陷地结构单元由一个圆孔和四 个枝节组成。四个缺陷地结构单元对称的嵌入在地板上,等间距地分布在贴片的四角底下。通过加载缺 地陷结构可以增大阵列单元在无限周期阵中的扫描角度。

2.2. 天线单元仿真结果与分析

利用 HFSS 电磁仿真软件中的主从边界设置单元,可以仿真无限大阵列中单元的电磁性能,图 2 显示的是无线周期边界条件示意图。通过综合仿真和优化,确定了天线的所有结构参数,提出的圆极化天线的性能如图 3 和图 4 所示。图 3 为仿真天线在两个主平面扫描时的反射系数。结果表明,该单元在 3.4~3.7 GHz 的整个工作频率范围内,±30°扫描时两主平面的反射系数均小于-10 dB。图 4 为该天线单元在两个主平面扫描时的轴比。在 3.4~3.7 GHz 的频段内,该天线单元在两个主平面±30°扫描时,轴比均小于 3.5 dB。图 5 为两个主平面在 3.55 GHz 中心频率处的归一化辐射方向图。图 6 为天线在 3.5 GHz 时不同时间点的模拟电流分布,可以清楚的看到垂直分支的相位差为 90°,两个正交的 LP 波叠加辐射 CP 波,此外,电流在四个相邻的时间点沿顺时针方向流过辐射贴片。从图 3~6 可以看出,该天线单元具有良好的左旋圆极化性能。

Figure 2. Schematic diagram of periodic boundary conditions 图 2. 周期边界条件示意图

Figure 4. Axis ratio of array units at different scanning angles 图 4. 阵列单元在不同扫描角度下的轴比

Figure 5. Simulated normalized radiation patterns of the proposed array element in the two primary planes at 3.55 GHz 图 5. 在 3.55 GHz 时阵列单元在两个主平面的方向图

Figure 6. Simulated current distributions in different time points of the proposed antenna at 3.55 GHz. (a) t = 0, (b) t = T/4, (c) t = T/2 and (d) t = 3T/4

图 6. 天线在 3.55 GHz 时不同时间点的模拟电流分布(a) t = 0, (b) t = T/4, (c) t = T/2 and (d) t = 3T/4

2.3. 圆极化微带相控阵列天线仿真结果与分析

为验证所设计阵列单元在阵列中的性能,在提出的圆极化天线单元的基础上,设计了一款 7 × 7 微带 相控阵天线。圆极化微带阵列天线的结构图如图 7 所示,单元间距 dx = 0.51 λ_0 , dy = 0.51 λ_0 ,其中 λ_0 为 3.55 GHz 对应的工作波长。图 8~10 分别为该圆极化相控阵在 3.4 GHz, 3.55 GHz 和 3.7 GHz 处不同扫描 角度的辐射方向图。图 9 为阵列在中心频点 3.55 GHz 处 E 和 H 面的波束扫描方向图,阵列的增益为 19.21 dBi, E 面波束扫描至 30 度时增益为 18.23 dBi, H 面波束扫描至 30 度时增益为 18.14 dBi,副瓣电平为 -13.0 dB,在整个扫描角度范围内增益下降为 1 dBi,增益变化比较平稳。

表1给出了两主平面±30°扫描范围内 3.4 GHz、3.55 GHz 和 3.7 GHz 天线阵列的轴比结果。仿真结果 表明该阵列天线在整个波束扫描过程中,各频率点的轴比均小于 3 dB。从图 8~10 和表1 可以看出,所 提出的圆极化微带相控阵列具有良好的圆极化性能和波束扫描能力。

Figure 7. Configuration of the proposed CP microstrip phased antenna scanning antenna array 图 7. 圆极化微带相控阵列天线结构示意图

Figure 8. Simulated normalized radiation patterns of the proposed microstrip phased array in the primary planes at 3.4 GHz 图 8. 在 3.4 GHz 时微带相控阵列在两个主平面的方向图

Figure 9. Simulated normalized radiation patterns of the proposed microstrip phased array in the primary planes at 3.55 GHz 图 9. 在 3.55 GHz 时微带相控阵列在两个主平面的方向图

扣面	^{打世} 毎 亩(dag)	轴比(dB)				
切囬	归细用反(deg)	3.4 GHz	3.55 GHz	3.7 GHz		
	0	3	1.2	1.21		
$a = 0^{\circ}$	10	2.8	1.1	1.41		
φ – 0	20	2.75	1.35	1.8		
	30	2.93	1.28	2.3		
	0	3	1.2	1.21		
$a = 00^{\circ}$	10	2.61	1.14	1.03		
φ – 90	20	2.5	1.29	1.06		
	30	2.88	1.06	0.43		

Table	1.	The Axi	s Ratio	Statistics	of the pr	oposed	microstrip	antenna	at differ	ent scant	ning a	angels
表 1.	微	带相控网	车列在7	不同扫描角	角度时的	轴比					-	-

3. 结论

本文设计了一种用于 5G 通信的圆极化微带相控阵天线,通过加载金属解耦柱和加载缺陷地结构, 有效地扩展了微带天线的带宽和波束宽度,实现了该圆极化阵列天线的波束扫描特性。仿真结果表明, 该阵列天线在 3.4~3.7 GHz 工作频率范围内可实现±30 度的扫描特性,而且轴比均小于 3 dB。该天线设计 思路简洁,电性能良好,对解决 5G 通信相控阵天线的波束扫描问题具有一定的研究价值。

参考文献

- [1] 邓斌, 王晶晶, 林强, 等. 雷达天线波瓣测量系统平台的设计与实现[J]. 兵器装备工程学报, 2019, 40(s2): 15-19.
- [2] 尹建勇, 汪云超, 杨鹏. 一种双圆极化宽带天线及其阵列应用 [J]. 电子科技大学学报, 2020, 49(5): 695-699.
- [3] 刘凡,赵晓燕,赵宏志,等. 一种新型双圆极化平面微带缝隙天线[J]. 西安电子科技大学学报, 2020, 47(3): 86-91.
- [4] Tripodi, M., Dimarca, F., Cadili, T., et al. (2012) Ka Bandactive Phased Array Antenna System for Satellite Communication on the Move Terminal. 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, 2-5 October 2012, 1-4. <u>https://doi.org/10.1109/ESTEL.2012.6400137</u>
- [5] Qing, N.X. and Chen, Z.N. (2016) Millimetre-Wave Broadband Circularly Polarized Stacked Microstrip Antenna for Satellite Applications. 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Taiwan, 26-29 July 2016, 341-342. <u>https://doi.org/10.1109/APCAP.2016.7843233</u>
- [6] Li, M., Xiao, S.Q. and Wang, B.Z. (2015) Investigation of Using High Impedance Surfaces for Wide-Angle Scanning Arrays. *IEEE Transactions on Antennas and Propagation*, 63, 2895-2901. <u>https://doi.org/10.1109/TAP.2015.2421936</u>
- [7] Wang, R., Wang, B.Z., Ding, X. and Yang, X.S. (2015) Planar Phased Array with Wide-Angle Scanning Performance Based on Image Theory. *IEEE Transactions on Antennas and Propagation*, **63**, 3908-3917. <u>https://doi.org/10.1109/TAP.2015.2446999</u>
- [8] Xia, R.L., Qu, S.W., Li, P.F., Yang, D.Q., Yang, S. and Nie, Z.P. (2015) Wide-Angle Scanning Phased Array Using an Efficient Decoupling Network. *IEEE Transactions on Antennas and Propagation*, 63, 5161-5165. <u>https://doi.org/10.1109/TAP.2015.2476342</u>
- [9] Wang, W., Cao, A., Ye, S., Liang, X., Guo, Q., Li, W., Jin, R. and Geng, J. (2012) Design of a Passive Multifaceted Phased Array for Hemispherical Coverage. *Proceedings of the* 2012 *IEEE International Symposium on Antennas and Propagation*, Chicago, 8-14 July 2012, 1-2. <u>https://doi.org/10.1109/APS.2012.6348478</u>
- [10] Schulpen, R., Johannsen, U., Pires, S.C., et al. (2018) Design of a Phased-Array Antenna for 5G Base Station Applications in the 3.4-3.8 GHz Band. 12th European Conference on Antennas and Propagation, London, 2019, 3082-3861. <u>https://doi.org/10.1049/cp.2018.1102</u>
- [11] 邓兆斌. 圆极化微带天线带宽展宽研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2014.