Synthesis and Anti/Bacteriostasis of Nano-Silver Composites Based Modified Chitosan

Bo Cai¹, Yumei Chen², Juncheng Leng¹, Yi Liu^{1,2*}

¹Guangzhou OPSEVE Cosmetics Co., Ltd., Guangzhou Guangdong ²Zhongshan AKDM Biotechnology Co., Ltd., Zhongshan Guangdong Email: ^{*}liuyi915@126.com

Received: Mar. 23rd, 2018; accepted: Apr. 13th, 2018; published: Apr. 20th, 2018

Abstract

Objective: To prepare chitosan N-vinylpyrrolidone graft copolymer (CTS-g-PVP) and its composites material loaded Nano-silver particles by using CTS-g-PVP as Template. Through the experiments about anti/bacteriostasis and biocompatibility, the composites materials were evaluated the possibility of being used as a cosmetic anticorrosion agent. Methods: Nano-Ag@CTS-g-PVP was synthesized using *in situ* method, and explored the antibacterial effect of it's by K-B Method. The biosafety was also evaluated by the chick embryo allantoic membrane test. Results: Nano-Ag@CTS-g-PVP was synthesized in 0.75% aqueous solution of CTS-g-PVP. The size of torispherical nano-silver particles are about 20 nm to 30 nm. The particles dispersed evenly in composites material with the amount of nano-silver in 1.51%wt. The composite material shows good biocompatibility and anti/bacteriostasis by using either alone or in the compound. Conclusions: With good anti/bacteriostasis effect and low irritation, Nano-Ag@CTS-g-PVP would have been used in the field of cosmetics.

Keywords

Modified Chitosa, Silver Nanoparticles, Composites Material, Aanti/Bacteriostasis

改性壳聚糖基纳米银复合材料 的制备与抗菌性能

蔡 波¹,陈宇媚²,冷军程¹,刘 意^{1,2*}

¹广州奥蓓斯化妆品有限公司,广东 广州 ²中山安康德美生物科技有限公司,广东 中山 Email: *liuyi915@126.com

*通讯作者。

收稿日期: 2018年3月23日; 录用日期: 2018年4月13日; 发布日期: 2018年4月20日

摘要

目的:制备由NVP改性的壳聚糖(CTS-g-PVP),以其为模版剂合成聚合物基纳米银复合材料,通过抗/抑 菌性和生物相容性实验评价其用作化妆品防腐败剂的可能性。方法:采用原位法合成改性壳聚糖基纳米 银复合材料(Nano-Ag@CTS-g-PVP),以K-B法探究CTS-g-PVP及其纳米银复合材料的抗/抑菌效果,并通 过鸡胚尿囊膜实验评价其生物安全性。结果:在0.75% wt CTS-g-PVP水溶液下合成载银量为1.51% wt 的Nano-Ag@CTS-g-PVP,其中准球形纳米银的粒径约20~30 nm。此复合材料不论单独使用还是复配, 均显示良好的生物相容性和抗/抑菌效果。结论:刺激性低的Nano-Ag@CTS-g-PVP及其复配体系具有良 好的抗/抑菌效果,有望应用于化妆品领域。

关键词

改性壳聚糖,纳米银,复合材料,抗/抑菌性

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

C O Open Access

1. 引言

当今在化妆品行业常用的防腐剂几乎是小分子防腐剂,其缺点是极易渗透进皮肤,对人体肌肤造成 危害。然而,具有良好生物相容性和抗/抑菌性能的大分子,因为其难渗透特征,有望发展成为一类低刺 激的新型防腐剂,实现化妆品"绿色"化而被广泛关注[1][2]。壳聚糖(Chitosan, CTS)是甲壳素脱乙酰基 后的产物,是一种带正电荷的线型多糖,也是一种含游离氨基的碱性多糖,是一种优良的天然抗菌剂[2][3] [4],还可通过形成配位键与金属阳离子结合,应用于吸附分离。但由于壳聚糖分子链比较规整,容易形 成结晶区,导致溶解性很差,只能溶于某些酸性的介质中,如稀醋酸、稀盐酸等,极大限制其应用范围。 利用壳聚糖大分子中大量的羟基和氨基易于被修饰特性,如通过酰化、羧基化、烷基化、硫酸酯化、醛 亚氨基化、叠氮化接枝等反应及共聚改性,可改性壳聚糖以满足实际应用需求[5][6][7][8][9];纳米银 是一种新兴的功能材料,由于其抗菌性的高效、广谱及不易产生耐药性等特征,可广泛应用于日常洗消 领域。有研究表明:由于立方纳米银与球形纳米银与菌体的接触面积较大,所以一般立方或球形纳米银 主要应用抗/抑菌方面,但是关于改性壳聚糖与纳米银的抗/抑菌协同效应鲜有报道[10][11][12]。

本实验采用自由基接枝共聚法制备水溶性良好的 N-乙烯基吡咯烷酮接枝共聚改性壳聚糖 (CTS-g-PVP),后经原位法合成改性壳聚糖基纳米银复合材料(Nano-Ag@CTS-g-PVP),并探究该复合材料 的生物安全性、抗/抑菌性能及其协同效应。

2. 合成与表征

2.1. 主要试剂

CTS、N-乙烯基吡咯烷酮(NVP)、Ce(SO₄)₂·4H₂O、维生素 C(Vc), AgNO₃、KBr、NaCl、浓硝酸、乙酸、丙酮(均为分析纯,上海阿拉丁试剂有限公司);营养琼脂、马铃薯葡萄琼脂、LB 肉汤食品级(广东环

凯微生物科技有限公司); 革兰氏阴性大肠杆菌、革兰氏阳性金黄色葡萄球菌、白色念珠菌(由广东药科大 学食品学院微生物实验室提供)。

2.2. CTS-g-PVP、Nano-Ag@CTS-g-PVP的合成

参考文献方法[1] [13],将2g壳聚糖加入80ml的去离子水,再加入1ml的冰醋酸在45℃水浴且通 氩气保护下,搅拌40min,确保壳聚糖全溶后,加入64mlN-乙烯基吡咯烷酮(NVP)以及硫酸高铈溶液(0.28 g硫酸高铈与0.8ml浓硝酸和40ml的去离子水混合搅拌溶解)。氩气保护下反应4h。把反应液用丙酮沉 淀后溶解透析冷冻干燥备用。

用冻干的 CTS-g-PVP 配成 0.75% wt 水溶液备用。配成 0.04 mol/L 的硝酸银溶液与 0.02 mol/L 的 Vc 溶液备用。在搅拌的条件下,往 10 ml 的 0.75% wt CTS-g-PVP 水溶液中缓慢滴加 0.4 ml 的 0.04 mol/L 的 硝酸银溶液。搅拌 20 min 后,再往其中缓慢滴加 0.8 ml 的 0.02 mol/L 的 Vc 溶液。反应 1 h,溶液颜色稳定,便可用丙酮沉淀后冷冻干燥备用。

2.3. 材料测试与表征

采用的主要仪器有:傅里叶变换红外光谱仪(Perkin-Elmer240Q,美国 PE)、紫外可见分光光度计(U-3900,日本日立)、透射电子显微镜(JEM2010-HR,日本电子)。X-射线衍射仪(D8 ADVANCE,德国 Bruker)、DSC 差示扫描量热仪(Q2000,美国 TA)。将 CTS-g-PVP 和 Nano-Ag@CTS-g-PVP 等分别进行 FT-IR、UV-vis、TEM、XRD、DSC 等表征。

2.4. 壳聚糖衍生物以及其载银复合材料的抗/抑菌性能评价实验

本实验采用 K-B 法探究[12] [13],选用大肠杆菌、金黄色葡萄球菌及白色念珠菌三种受试菌株,首先分别 探究 CTS-g-PVP 浓度及梯度载银量 Nano-Ag@CTS-g-PVP 的抗/抑菌效果;其次探究了 Nano-Ag@CTS-g-PVP 与 CTS-g-PVP-cys 或 Nano-Ag@CTS-g-PVP-cys 复配后的抗/抑菌效果。具体实验方案是:1 号样品含 0.75%(wt)的 Nano-Ag@CTS-g-PVP 水溶液;2 号样品为含 1.5%(wt)的 CTS-g-PVP-cys 水溶液;3 号样 品为含 0.75%(wt)的 Nano-Ag@CTS-g-PVP 跟 1.5%(wt)的 CTS-g-PVP-cys 复配溶液;4 号样品为含 1.5%(wt)的 Nano-Ag@CTS-g-PVP-cys;5 号样品为含 0.75%(wt)的 Nano-Ag@CTS-g-PVP 跟 1.5%(wt)的 Nano-Ag@CTS-g-PVP 跟 1.5%(wt)的 Nano-Ag@CTS-g-PVP 跟 1.5%(wt)的 Nano-Ag@CTS-g-PVP 水溶液;5 号样品为含 0.75%(wt)的 Nano-Ag@CTS-g-PVP 跟 1.5%(wt)的 Nano-Ag@CTS-g-PVP 承溶液;选用市面上常用抗真菌药物,如氟康唑氯化钠注射、盐酸特比萘芬,分别加到 0.75%(wt) CTS-g-PVP 水溶液中得阳性对照组 1 和对照组 2; Nano-Ag@CTS-g-PVP 体系中的递 度载银量为 0%(wt)、0.76%(wt)、1.51%(wt)、2.25%(wt)。

2.5. 鸡胚尿囊膜实验

阴性对照样品为 0.9% wt 氯化钠溶液, 受试物对应于抗/抑菌实验 2.6 中的 1、3、5 号样品,参照文献 [14]方法进行鸡胚尿囊膜实验,考虑本实验的三种样品均为不透明液体,所以采用终点评判法,评判标准 参照《中华人民共和国出入境检验检疫行业标准》。

3. 结果与分析成

3.1. Nano-Ag@CTS-g-PVP 红外光谱分析

如图 1,3500~3000 cm⁻¹ 处为 CTS 中羟基缔合峰,当壳聚糖改性为 CTS-g-PVP,其中对应的这部分 缔合峰明显变窄。1647 cm⁻¹ 处强吸收峰为酰胺基的 C=O 伸缩振动峰,1397 cm⁻¹ 和 1087 cm⁻¹ 处对应为 PVP 中的 C-N 伸缩和弯曲振动峰,据此可推测 CTS 成功接枝上了 PVP 支链。与 CTS-g-PVP 对比, Nano-Ag@CTS-g-PVP 谱图中伯氨的弯曲振动峰由 1521 cm⁻¹ 迁移至 1529 cm⁻¹,这可说明在复合材料中

Figure 1. FT-IR spectra of CTS-g-PVP and its composite materials 图 1. CTS-g-PVP 及其复合材料的 FT-IR 图

纳米银与 CTS 中的-NH2 存在螯合或配位。

3.2. Nano-Ag@CTS-g-PVP 紫外 - 可见光光谱分析

据文献[15] [16]报道,450 nm 附近的吸收峰对应准球形纳米银颗粒,最大吸收峰法波长与纳米银的 平均粒径成正比,且纳米粒子分布越窄,其峰型越对称,强度越高。从图 2(C)可知:对比光催化还原法 与化学还原法的探究中发现,光催化还原法反应效率低且形成的纳米银粒径不均一;而化学还原法合成 Nano-Ag@CTS-PVP 复合材料探究实验中,该方法最佳 Vc 比硝酸银的加入摩尔比是 1:1 (如图 2(E)),且 分散介质中含 CTS-g-PVP 浓度最好控制在 0.75%~1.00%之间,形成的球形纳米银银尺寸是相对小且均一 (如图 2(F))。

3.3. Nano-Ag@CTS-g-PVP 中纳米银的形貌

在 0.75%(wt)的 CTS-g-PVP 水溶液体系中,原位法可制备储存稳定,分散均匀的改性壳聚糖基纳米 银复合物,当载银量约 1.51% wt (如图 3(b))时,样品中纳米银尺寸大小相对均一,且纳米银的平均直径 约为 20~30 nm。这是主要是由于在原位反应体系中,改性壳聚糖分子上的伯氨基和银离子之间存在配位 或螯合作用,对银颗粒起到了很好的分散稳定作用。若聚合物过多(如图 3(c)),纳米银表面包裹严重,对 复合材料的抗/抑菌性能影响明显;若聚合物过少(如图 3(a)),纳米银颗粒并集严重,会导致复合材料稳 定性明显降低。

3.4. DSC 曲线分析

如图 4,在90℃~120℃之间,CTS、CTS-g-PVP、Nano-Ag@CTS-g-PVP 都有一个峰型差不多的吸热峰,分别对应在110℃、98℃、120℃,此峰应为聚合物中结晶水的汽化吸热峰。CTS 在 309℃有一个氧化放热峰,接枝共聚后改变了共聚物的聚集态,导致 CTS-g-PVP 的氧化放热峰左移至 235℃。 Nano-Ag@CTS-g-PVP 的氧化放热峰在 233℃,这可能是因为纳米银具有低温催化氧化的作用所致,对比两个样品的峰型,差异不明显,与 CTS-g-PVP 样品比较,Nano-Ag@CTS-g-PVP 的氧化放热峰相对更强。

3.5. Nano-Ag@CTS-g-PVP的 XRD 表征分析

如图 4, 2θ = 35°~80°范围内分别有 38.11°、44.30°、64.44°、77.40°四个衍射峰,与银的标准卡片完全 吻合[16],且分别对应于金属银的(111)、(200)、(220)、(311)四个晶面的衍峰,银立方体表面主要覆盖(100)

Figure 2. UV-Vis spectra of the series composite materials (Nano-Ag@CTS-g-PVP) 图 2. 系列复合材料(Nano-Ag@CTS-g-PVP)的紫外光谱

Figure 3. TEM image of nano-silver particles in composite materials 图 3. 复合材料中纳米银颗粒的 TEM

晶面,准球形颗粒表面主要覆盖(111)晶面。根据 XRD 图可知,3 号样品主要为基于 CTS-g-PVP 的准球 形银纳米复合材料。

3.6. 抗/抑菌实验的形貌

3.6.1. 不同载银量的 Nano-Ag@CTS-g-PVP 抗/抑菌实验结果的形貌

如表 1,在 0.75% CTS-g-PVP 水溶液中,合成梯度载银量的 Nano-Ag@CTS-g-PVP 复合材料,其抗/

Figure 4. The spectra of CTS-g-PVP and its composite materials (left for DSC spectra) (right for XRD spectra) 图 4. CTS-g-PVP 及其复合材料的 DSC(左)、XRD(右)图谱

Table 1. Anti/bacteriostasis effect of Nano-Ag@CTS g-PVP with different nano-silver loaded
表 1. Nano-Ag@CTS-g-PVP 复合材料中不同载银量抗/抑菌效果

抗/抑菌实验 Nano-Ag@CTS-g-PVP 浓度(g/ml)	菌液种类 —	不同载银量 Nano-Ag@CTS-g-PVP 抗/抑菌圈平均直径(mm)				
		0% wt	0.76% wt	1.51% wt	2.25% wt	
0.75%	白色念珠菌	7.08	7.33	8.83	11.50	
	金黄色葡萄球菌	6.67	6.33	8.00	9.00	
	大肠杆菌	6.00	6.00	6.20	6.22	

抑菌效果与其载银量存在一定关系。其中,对白色念珠菌的抗/抑菌效果,随纳米银的含量的升高明显增强;对金黄色葡萄球菌的抗/抑菌效果也有一定的增强趋势,但抗/抑菌强度远不及对白色念珠菌的抑制效果;对大肠杆菌而言,复合材料中的载银量对其抗/抑菌效果影响不明显。

3.6.2. 含 Nano-Ag@CTS-g-PVP 的复配体系抗/抑菌结果

如表 2,对于三种实验珠菌而言,3 号、4 号、5 号样品的抗/抑菌效果均明显阳性对照组,数据表明 采用本实验方案,不论将 Nano-Ag@CTS-g-PVP 跟 CTS-g-PVP-cys 复配,或是跟 Nano-Ag@CTS-g-PVP-cys 复配,都呈现出抗/抑菌性的协同效应。对比 3 号与 5 号样品实验数据,可推断纳米银颗粒是复合体系抗 /抑菌性关键因素,这类效应对金黄色葡萄球菌理明显。对比表 1 和表 2 可知,当复合材料中含半胱氨酸 改性基团,对大肠杆菌的抗/抑菌性有明显改善。但是,复合材料 Nano-Ag@CTS-g-PVP-cys 的水溶性较 Nano-Ag@CTS-g-PVP 更差。因此,3 号样品具有理想抗/抑菌性的复配体系。

3.7. Nano-Ag@CTS-g-PVP 及其复配体系的鸡胚尿囊膜评价结果的形貌

如表3和图5所示:1号、3号和5号样品三种受试物均无眼刺激性,据此推测:Nano-Ag@CTS-g-PVP、 CTS-g-PVP-cys和Nano-Ag@CTS-g-PVP-cys 三种材料的刺激性都极低,具有良好的生物相容性,且其对 应的复配体系也亦是如此,因此在化妆品行业具有巨大的应用前景。

4. 结论

当模版剂改性壳聚糖 CTS-g-PVP 浓度为 0.75% wt 时,原位法制备载银量 1.51% wt 的 Nano-Ag@CTS-g-PVP 复合材料,其中准球形纳米银颗粒尺寸均一,粒径在 20~30 nm 范围,其对应的抗/抑菌性和生物相容性实验结

Table 2. Anti/bacteriostasis effect of nano-Ag@CTS-g-PVP and its compounding systems 表 2. Nano-Ag@CTS-g-PVP 及其相关复配的抗/抑菌效果

菌液种类 —	抗/抑菌圈平均直径(mm)						
	1 号样	2 号样	3 号样	4 号样	5 号样	阳性对照组1	阳性对照组2
白色念珠菌	11.90	10.20	14.20	12.83	16.33	12.70	12.10
金黄色葡萄球菌	7.40	8.50	11.50	10.67	15.33	8.00	7.53
大肠杆菌	6.18	8.75	10.25	11.50	14.33	9.00	7.30

Table 3. Eye irritation score of CTS-g-PVP and its composite materials 表 3. CTS-g-PVP 及其载银复合材料眼刺激性评价

受试物	ES (平均值)	刺激分类	血管及血管网变化
1 号样品	1	无刺激性	血管内无变化
3 号样品	1	无刺激性	血管内无变化
5 号样品	2	无刺激性	血管内无变化

Figure 5. Image of the damage after three kinds of subjects acted on CAM 图 5. 三种受试物作用 CAM 后受损现象照片

果主要有:

1) Nano-Ag@CTS-g-PVP(载银量 1.51% wt)对白色念珠菌的抗/抑菌圈可达 11.9 mm 以上,因为抗/抑菌 的协同效应,导致其效果优于市面上的抗真菌药物(氟康唑氯化钠注射液、盐酸特比萘芬);

2) Nano-Ag@CTS-g-PVP 与 CTS-g-PVP-cys 或者 Nano-Ag@CTS-g-PVP-cys 复配体系对白色念珠菌、金黄色葡萄球菌、大肠杆菌的抗/抑菌效果明显优于市面上的抗真菌药物。

3) 鸡胚尿囊膜实验表明 CTS-g-PVP、Nano-Ag@CTS-g-PVP 及其复配体系均无眼刺激性,有望成为一种新型化妆品防腐剂。

致 谢

本研究工作获得了"中山火炬高技术创业中心有限公司创业孵化资金项目"资助。

参考文献

- Wang, C., Yang, F., Liu, L., *et al.* (2009) Hydrophilic and Anti-Bacterial Properties of Polyvinyl Alhol/4-Vinylpyridine Graft Polymer Modified Polypropylene Non-Woven Fabric Membranes. *Membrane Science*, 345, 223-232. <u>https://doi.org/10.1016/j.memsci.2009.09.002</u>
- [2] Dash, M., Chiellini, F. and Ottenbrite, R.M. (2011) Chitosan-A Versatile Semi-Synthetic Polymer in Biomedical Applications. *Progress Polymer Science*, **36**, 981-1014. <u>https://doi.org/10.1016/j.progpolymsci.2011.02.001</u>
- [3] 姚日生. 药用高分子材料[M]. 北京: 化学工业出版社, 2008: 77-86.

- [4] 王瑞. 壳聚糖/β-甘油磷酸钠温敏性水凝胶的制备与表征[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2012.
- [5] 楚立凯. 温敏性壳聚糖水凝胶药物载体的制备及性能研究[D]: [硕士学位论文]. 苏州: 苏州大学, 2015.
- [6] Hench, L.L. and Polak, J.M. (2002) Third-Generation Biomedical Materials. Science, 295, 1017. <u>https://doi.org/10.1126/science.1067404</u>
- [7] 俞耀庭, 张兴栋. 生物医用材料[M]. 天津: 天津大学出版社, 2000: 13-14.
- [8] Sun, J. and Matthew, H.W. (2000) Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review. *Biomaterials*, 21, 2589-2598. <u>https://doi.org/10.1016/S0142-9612(00)00126-5</u>
- How, T., Kensuke, T. and Kerichi, F. (1997) Chlorination of Chitin with Sulfuryl Chloride under Homogeneous Conditions. *Carbohydrate Polymers*, 33, 13-18. <u>https://doi.org/10.1016/S0144-8617(97)00035-0</u>
- [10] 戚旻熠, 于娜娜, 李桂英. 敏感性聚电解质纳米粒子的制备及对 5-FU 的控制释放[J]. 鲁东大学学报(自然科学版), 2014, 30(4): 315-319.
- [11] 孙彩华,何佳奇,余朝辉.不同形态纳米银的制备及其杀菌性能的研究[J].中国医药导报,2015,12(34):15-19.
- [12] 韩苹. 载银活性炭的载银量分析[J]. 化学世界,1999(11): 606-608.
- [13] 李灿楷, 丰伟, 刘意, 等. 可食用果蔬保鲜剂 CTS-cys 的合成[J]. 化学工程与技术, 2017, 7(3): 99-107.
- [14] SN/T2329-2009 化妆品眼刺激性/腐蚀性的鸡胚绒毛尿囊膜试验[S]. 北京: 中国标准出版社, 2009.
- [15] Xiu, Z., Zhang, Q., Puppala, H.L., et al. (2012) Negligible Particle Specific Antibacterial Activity of Silver Nanoparticles. Nano Letters, 12, 4271-4275. <u>https://doi.org/10.1021/nl301934w</u>
- [16] 李达恒. 含纳米银的抗菌凝胶和敷料的制备与表征[D]: [硕士学位论文]. 广州: 南方医科大学, 2016.

Hans 汉斯

知网检索的两种方式:

- 打开知网页面 <u>http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD</u>下拉列表框选择: [ISSN],输入期刊 ISSN: 2160-7613,即可查询
 打开知网首页 <u>http://cnki.net/</u>
- 左侧 "国际文献总库"进入,输入文章标题,即可查询

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>ms@hanspub.org</u>