C₂N负载的过渡金属三聚体催化剂用于CO₂ 电催化还原制CH₄:第一性原理研究

佟立凯,张 钰,张 博*

北京邮电大学集成电路学院,信息光子学与光通信国家重点实验室,北京

收稿日期: 2022年10月14日; 录用日期: 2022年11月4日; 发布日期: 2022年11月14日

摘要

三原子催化剂(TACs)在二氧化碳还原反应(CO₂RR)中展现了巨大潜力,设计新型三原子催化剂具有重要 意义。本工作利用第一性原理,建立了单层多孔氮化石墨烯(C₂N)负载的过渡金属三聚体(3TM-C₂N, TM = Mn, Mo, Ru, Ti)催化剂用于将二氧化碳(CO₂)还原为甲烷(CH₄)。计算结果表明,3TM-C₂N催化剂结构稳 定,不但能有效吸附和活化CO₂,而且对析氢反应(HER)有良好的抑制性。吉布斯自由能分布图显示, CO₂RR在3TM-C₂N上会以不同的反应路径生成CH₄。极限电势(U₁)分析显示,3Mn-C₂N表现出了最好的催 化性能,对应的U₁为-0.44 V。这些发现不仅为实验上调控C₂N基催化剂提供了理论依据,还对开发其他 高效的CO₂RR电催化剂有一定的指导意义。

关键词

C₂N,三原子催化剂,二氧化碳还原反应,CH₄,第一性原理

Transition Metals Trimers on C₂N as Electrochemical Catalysts for CO₂ Reduction to CH₄: A First-Principles Study

Likai Tong, Yu Zhang, Bo Zhang*

State Key Laboratory of Information Photonics and Optical Communications, School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing

Received: Oct. 14th, 2022; accepted: Nov. 4th, 2022; published: Nov. 14th, 2022

*通讯作者。

Abstract

Triple-Atom Catalysts (TACs) have shown great potential in carbon dioxide reduction reactions (CO_2RR). It is of great significance to design new Triple-Atom Catalysts. In this work, a monolayer porous nitrogen-doped graphene (C_2N) supported transition metal trimers ($3TM-C_2N$, TM = Mn, Mo, Ru, Ti) catalyst models were established to catalyze the reduction of carbon dioxide (CO_2) to methane (CH_4) using first-principles. The results show that the structure of the $3TM-C_2N$ catalyst is stable, not only can effectively adsorb and activate CO_2 , but also has good inhibition of Hydrogen Evolution Reaction (HER). The Gibbs free energy profiles show that the CO_2RR produces CH_4 products in different reaction paths on $3TM-C_2N$. The limiting potential (U_L) analysis showed that $3Mn-C_2N$ exhibited the best catalytic performance, U_L of -0.44 V. These findings not only provide a theoretical basis for the experimental regulation of C_2N -based catalysts, but also provide guidance for the development of other efficient CO_2RR electrocatalysts.

Keywords

C₂N, Triple-Atom Catalyst, Carbon Dioxide Reduction, CH₄, First-Principles

Copyright © 2022 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC ① Open Access

1. 引言

化石燃料的消耗逐年增加导致二氧化碳(CO₂)在大气中不断累积,造成了严重的温室效应和海洋酸化 等环境问题,迫使人们寻找有效途径来降低大气中 CO₂的浓度[1] [2] [3]。近年来,已经有多种高效的 CO₂ 转化技术开发出来,包括生物催化、光催化和电催化方法等。其中,电催化 CO₂ 还原反应(CO₂RR)生成 甲烷(CH₄)作为一种有前途的途径受到了广泛关注[4] [5]。然而,由于二氧化碳具有极佳的热力学稳定性 和较高的活化能垒使得该反应较难发生[6]。另外,析氢反应(HER)因其较低的过电位而成为 CO₂RR 的竞 争副反应。因此,设计低过电位且能抑制 HER 的新型 CO₂RR 电催化剂具有重要意义[7] [8]。

近年来,由于纳米技术的发展,人们可以在纳米尺度进行结构微调从而控制电催化剂的结构,使其 拥有更好的稳定性、催化活性和产物选择性[9] [10]。例如,活性位点高度分散的原子层厚度级别的单原 子催化剂(SACs)、双原子催化剂(DACs)和三原子催化剂(TACs)等,因其具有过电位低、转化效率高、产 物选择性好以及抑制 CO₂RR 过程中 HER 的能力,所以具有良好的应用前景[11] [12]。具有 Mn、Mo、 Ru 和 Ti 等过渡金属原子的 SACs 和 DACs 已被多篇报道证明具有较好的 CO₂RR 催化活性[13] [14] [15] [16] [17]。最近,根据一些报导,TACs 因其较高的金属原子负载率、较高的金属原子利用率和较大的接 触面积有望成为性能更好的 CO₂RR 催化剂[18] [19] [20]。值得注意的是,TACs 由金属三聚体和支撑材料 组成,其合成工艺复杂且稳定性较差,因而对支撑材料有较高要求。合适的支撑材料可以防止过渡金属 三聚体的聚集,从而降低合成难度,并且它们之间强烈的界面相互作用可以提高催化剂的稳定性[20] [21]。 多孔氮化石墨烯(C₂N)是一种存在周期性均匀空腔的二维材料,是氮掺杂石墨烯的一种衍生物[22]。其空 腔周围环绕着 6 个氮原子(N6 空腔),被认为是金属三聚体的理想载体。其本身较高的热稳定性有利于合 成稳定的 TACs [23]。因此,C₂N 在充当三原子催化剂的支撑材料上有巨大潜力。 因此,在本工作中,通过第一性原理,建立了 C₂N 负载的三原子催化剂 3TM-C₂N (TM = Mn, Mo, Ru, Ti)模型,并系统地研究了 3TM-C₂N 催化 CO₂RR 生成 CH₄ 的性能。首先,计算了 3TM-C₂N 的稳定性及 电子结构;其次,从 d 带中心理论及电子结构的角度,深入分析了 3TM-C₂N 对 CO₂ 的吸附与活化;最后, 阐明了 CO₂在 3TM-C₂N 上还原为 CH₄ 的最有利路径及其极限电势。计算结果表明, 3TM-C₂N 催化剂结 构稳定,能有效吸附和活化 CO₂,并且对 HER 有良好的抑制性。其中, 3Mn-C₂N 表现出最好的催化活性, 其极限电势为-0.44 V。这些发现不仅为实验上调控 C₂N 基催化剂提供了理论依据,还对开发其他高效的 CO₂RR 电催化剂有一定的指导意义。

2. 研究方法

2.1. 计算参数

基于具有周期性边界条件的密度泛函理论(DFT),本工作中的所有任务都是在 Vienna *Ab-initio* Simulation Package (VASP)中进行计算的[24] [25]。计算过程中,将C-2s²2p²、N-2s²2p³、O-2s²2p⁴、H-1s¹ 以及 Mn-3d⁶4s¹、Mo-4d⁵5s¹、Ru-4d⁷5s¹、Ti-3d³4s¹ 电子轨道作为价电子,通过投影缀加平面波(Projector Augmented Wave, PAW)方法描述价电子与芯电子间的相互作用,通过广义梯度近似(Generalized Gradient Approximation, GGA)中的 Perdew-Burke-Ernzerhof (PBE)方法描述交换关联函[26] [27]。为了使总能量的 结果更加精确,计算中打开了自旋极化并施加了 DFT-D3 修正。其中,动能截断设置为 450 eV,能量和 力的收敛标准分别为 10⁻⁴ eV 和 0.05 eV/Å。高斯方法将温度展宽设置为 0.01 eV,用于改善电子收敛步中 接近费米能级的电子状态的收敛性。结构优化时 K 空间以伽马为中心(Gamma-centered)进行 3 × 3 × 1 的 网格剖分。在计算的过程中,对于结构中的全部原子进行驰豫。

2.2. 计算公式

本文采用了计算氢电极模型(CHE)计算了标准条件下质子 - 电子对与氢气的电化学势。

$$\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \leftrightarrow \mathrm{I}/\mathrm{2H}_{2}(\mathrm{g}) \tag{1}$$

依据该方法,每个基本反应的吉布斯自由能变化值计算公式如下[28]:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{2}$$

其中, ΔE 为 DFT 计算得到的能量差值, ΔE_{ZPE} 为零点能的变化, T 为温度(298.15 K), ΔS 为熵的变化。 吸附能大小可以判断 CO₂ 吸附在催化剂表面时的稳定程度。吸附能公式如下[28]:

$$\Delta E_{ads} = E_{system} - \left(E_{surf} + E_{react}\right)$$
(3)

其中, E_{system} 为总能量, E_{suf} 和 E_{react} 分别代表了与吸附分子作用的表面模型和真空中独立的的吸附分子 的能量。通常来说, 吸附能为负值, 表明吸附过程是放热反应, 吸附的系统是稳定的。

CO2吸附在催化剂表面的机理可以由 d 带中心理论阐述, 计算 d 带中心的公式如下:

$$\varepsilon_{d} = \frac{\int_{-\infty}^{\infty} n_{d}(\varepsilon)\varepsilon d\varepsilon}{\int_{-\infty}^{\infty} n_{d}(\varepsilon)d\varepsilon}$$
(4)

其中, $n_d(\varepsilon)$ 为对应的d带上电子的密度, ε 为能量。

另外,极限电势(U_L)是使每个基本步骤都能放热的最小负电位。公式为:

$$U_{\rm L} = -\Delta G_{\rm max} / e \tag{5}$$

其中, ΔG_{max} 为整个 CO₂RR 路径中自由能变化的最大值, e 为电子电量[29]。

3. 结果与讨论

3.1. 3TM-C₂N 模型的构建及稳定性分析

优化后的二维 C₂N 晶格参数为 a = b = 8.32 Å,与文献中 8.30 Å 非常接近,说明计算参数设置的比较 合理[30]。三聚体模型采用了 C₂N 晶格的 2 × 2 超晶胞,模型中共有 48 个 C 原子和 24 个 N 原子,如 图 1(a)所示。在 c 方向我们设置了 15 Å 的真空层来避免相邻晶格间的影响。过渡金属三聚体被放置 在 N6 空腔里,每个过渡金属原子都与两个 N 原子成键,组成三聚体构型。图 1(b)~图 1(e)显示,Mn、 Mo、Ti 原子都高于 C₂N 平面。而金属 Ru 只有两个原子高于 C₂N 平面,一个原子与 C₂N 处于同一平 面。

Figure 1. (a) The stable structure of the optimized 2 × 2 C₂N supercell; (b)~(e) The stable structure of the optimized 3TM-C₂N 图 1. (a) 优化后 2 × 2 C₂N 超晶胞的稳定结构图; (b)~(e) 优化后 3TM-C₂N 的 稳定结构图

高稳定性是催化剂应用的先决条件,所以我们用内聚能对 3TM-C₂N 催化剂的稳定性进行了评估。内 聚能越高,对应的结构越稳定。3TM-C₂N 催化剂的内聚能为 3Mn-C₂N (6.67 eV/atom) < 3Mo-C₂N (6.71 eV/atom) < 3Ti-C₂N (6.76 eV/atom) < 3Ru-C₂N (6.79 eV/atom)。它们的内聚能虽然比初始 C₂N (6.82 eV/atom)略小,但是要高于碳磷化物(4.12~6.45 eV/atom) [31]和硅烯(3.71 eV/atom) [32],说明其具有较高的稳定性。

为了深入理解金属三聚体和 C₂N 之间的相互作用,我们计算了 3TM-C₂N 电子态密度和差分电荷密度,如图 2 所示。图 2(a)~图 2(d)电子态密度图显示,在费米能级附近,金属三聚体的 d 轨道(图中黄色部分)与 C₂N 的中 N 的 p 轨道(图中青色部分)之间有明显的重叠峰(图中绿色部分),说明 3TM-C₂N 上的载流 子浓度较高,且金属三聚体与 C₂N 的相互作用强烈。尤其在 3Ru-C₂N 中,重叠峰更多,这说明 Ru 原子 与 N 原子之间相互作用比其他金属原子和 N 原子之间相互作用更强烈,这是 3Ru-C₂N 催化剂稳定性最高 的原因。同时,也正是因为较强的相互作用,导致 Ru 原子与 N 原子之间键能更强,键长更短,与图 1 中有一个 Ru 原子与 C₂N 处于同一平面的构型相符。

图 2(e)~图 2(h)差分电荷密度图显示,正电荷在金属原子周围积累(图中青色部分),在 N 原子附近减少(图中黄色部分),说明电子从金属原子转移到了 N 原子上,从而使 N 原子与 TM 原子结合。

Figure 2. (a)~(d) Density of states (DOS) of 3TM-C2N; (e)~(h) Charge density differences of 3TM-C₂N 图 2. (a)~(d) 3TM-C₂N 的电子态密度图; (e)~(h) 3TM-C₂N 的差分电荷密度图

3.2. CO₂在 3TM-C₂N 上的吸附和初始活化

CO₂吸附是 CO₂RR 的第一步,也是至关重要的一步。稳定的 CO₂吸附是 CO₂RR 能继续下去的先决 条件。CO₂的活化程度一定程度上反映了催化剂的催化性能。如图 3 所示,CO₂能稳定吸附在催化剂表 面,并且 CO₂分子构型发生了明显的变化说明 CO₂得到了初始活化。为了定量分析,将 CO₂吸附能和 CO₂键长键角等信息在表 1 中列出。CO₂吸附在 3Mn-C₂N、3Mo-C₂N、3Ru-C₂N 和 3Ti-C₂N 催化剂表面 的吸附能分别为–1.27、–2.97、–1.59 和–3.73 eV。负值的吸附能表示 CO₂能稳定吸附在 3TM-C₂N 催化剂 表面。C-O 键长从 1.20~1.42 Å 的变化以及 O-C-O 键角从 108.97~128.80°的弯曲都说明了 CO₂得到了有效 的活化。

为了深入探究 CO₂在催化剂表面的吸附反应,我们计算了金属三聚体的d带中心和差分电荷密度图。 图 4(a)显示金属三聚体的d带中心与吸附能呈线性关系,相关系数 R = -0.75,与d带中心理论模型符合 较好。为了更深入的了解金属三聚体上 CO₂的吸附作用,我们从三维轨道中提取了 alpha(α)态和 beta(β) 态的d带中心位置如图 4(b),图 4(c)所示。 α 态和 β 态的d带中心变化趋势和总d带中心变化趋势一致, 但 α 态d带中心与吸附能线性关系的相关系数为 R = -0.99,相关性更好,说明 CO₂吸附在催化剂表面时 与金属三聚体的 α 轨道相互作用更强。图 4(d)~图 4(g)中的差分电荷密度显示,正电荷在金属原子上积累 (图中青色部分)。电子由金属原子向 CO₂分子转移使 CO₂得到了活化。

Table 1. The adsorption energies (E_{ads}), change value of Gibbs free energy adsorbed by CO₂ (ΔG), bond lengths of C and O atoms in CO₂ (d_{C-O}) and O-C-O angles of the most stable CO₂ adsorption configurations on 3TM-C₂N

表 1. 3TM-C₂N 上吸附 CO₂最稳定构型的吸附能(E_{ads})、CO₂吸附吉布斯自由能变化值(ΔG)、CO₂中 C 和 O 原子的 键长($d_{C-\Omega}$)和 O-C-O 角度

_					
	Models	$E_{ads}(eV)$	$\Delta G(eV)$	d _{c-o} (Å)	O-C-O angles
	3Mn-C ₂ N	-1.27	-0.63	1.42/1.31	110.58°
	3Mo-C ₂ N	-2.97	-2.33	1.37/1.37	115.68°
	3Ru-C ₂ N	-1.59	-0.93	1.20/1.41	128.80°
	3Ti-C ₂ N	-3.73	-3.10	1.41/1.41	108.97°

Figure 4. (a) The linear relationship between the total d-band center of the transition metal trimer in 3TM-C2N and the adsorption energy of CO₂; (b) The linear relationship between the d-band center of the alpha-state orbital of the transition metal trimer and the adsorption energy of CO₂ in 3TM-C₂N; (c) The linear relationship between the d-band center of the beta-state orbital of the transition metal trimer and the adsorption energy of CO₂ in 3TM-C₂N; (c) The linear relationship between the d-band center of the beta-state orbital of the transition metal trimer and the adsorption energy of CO₂ in 3TM-C₂N; (d)~(g) Charge density differences of CO₂ adsorbed by by 3TM-C₂N **图 4.** (a) 3TM-C₂N 中过渡金属三聚体的总 d 带中心与 CO₂ 吸附能的线性关系图; (b) 3TM-C₂N 中过渡金属三聚体 β 态 轨道的 d 带中心与 CO₂ 吸附能的线性关系图; (d)~(g) 3TM-C₂N 吸附 CO₂ 时的差分电荷密度图

3.3. 析氢反应与二氧化碳还原反应的选择性

众所周知,在动力学上容易发生的 HER 作为副反应阻碍了 CO2RR 的进行。所以一个好的催化剂能

抑制 HER 是必要的。表 1 和表 2 显示,在 3Mn-C₂N、3Mo-C₂N、3Ru-C₂N 和 3Ti-C₂N 上的氢吸附吉布斯 自由能分别为-0.99、-2.44、-0.43 和-0.89 eV。 $|\Delta G_{(*H)}| > 0.4 \text{ eV}$ 说明 HER 在 3TM-C₂N 催化剂上较难发 生[33]。同时, $|E_{ads(*CO_2)}| > |E_{ads(*H)}|$ 说明*CO₂比*H 更容易吸附在 3TM-C₂N 催化剂表面从而抑制 HER。另 外,在第一步质子化过程中,CO₂加氢会生成*COOH (*CO₂ + H⁺ + e⁻ → *COOH)和*OCHO (*CO₂ + H⁺ + e⁻ → *OCHO)两个中间体。对于 HER 来说,也有*H (* + H⁺ + e⁻ → *H)产生。如图 5 所示,通过比较 $\Delta G_{(*COOH/*OCHO)} 与 \Delta G_{(*H)}$ 的大小(吉布斯自由能较低的选择性较高),3TM-C₂N 催化剂都落在右下半区域 (CO₂RR 选择性),倾向于生成*COOH 或*OCHO。综合以上两点,可以得出 3TM-C₂N 催化剂对 CO₂RR 具有选择性,能够很好地抑制 HER 的发生。

Figure 5. Free energy changes of the first hydrogenation steps in CO₂RR and HER on 3TM-C₂N 图 5. 在 3TM-C₂N 上发生二氧化碳还原反应和析氢 反应第一步加氢反应的自由能变化

Table 2. The Gibbs free energy change (ΔG) and adsorption energies (E_{ads}) of the most stable H₂ adsorption configurations on 3TM-C₂N

Models	$\Delta G_{(*H)}$ (eV)	$E_{ads(*H)}$ (eV)
3Mn-C ₂ N	-0.99	-1.24
3Mo-C ₂ N	-2.44	-2.67
$3Ru-C_2N$	-0.43	-0.67
3Ti-C ₂ N	-0.89	-1.13

表 2. 3TM-C₂N 上吸附 H 原子最稳定构型的吉布斯自由能变化值(ΔG)和吸附能(E_{ads})

3.4. CO2还原为 CH4

图 6 显示了在 3TM-C₂N 催化剂上, CO₂通过 8 电子路径生成 CH₄的中间体吸附结构和自由能分布图。 CO₂在 3Mn-C₂N 和 3Mo-C₂N 上生成 CH₄的路径为: CO₂ → *CO₂ → *COOH → *CO → *COH → *HCOH → *CH₂OH → *CH₂ → *CH₃ → CH₄。对于 3Mn-C2N,速率限制步骤是*COH → *HCOH,吉布斯自由能 变化最大值为-0.44 eV。对于 3Mo-C2N,速率限制步骤是*CH₃ → CH₄,吉布斯自由能变化最大值为-0.97 eV。CO₂在 3Ru-C₂N 上生成 CH₄的路径为: CO₂ → *CO₂ → *COOH → *HCOOH → *HCOH → *CO → *HCOH → *CH → *CH₂ → *CH₃ → CH₄,速率限制步骤是*CH₂ → *CH₃,吉布斯自由能变化最大值为-0.73 eV。CO₂ 在 3Ti-C₂N 上生成 CH₄的路径为: CO₂ → *COOH → *CO → *COH → *HCOH → *CH → *CH₂ → *CH₃ → CH₄, 速率限制步骤是*CO → *COOH → *CO → *COH → *HCOH → *CH → *CH₂ → *CH₃ → CH₄,速率限制步骤是*CO → *COOH → *CO → *COH → *HCOH → *CH → *CH₂ → *CH₃ → CH₄,速率限制步骤是*CO → *COH,吉布斯自由能变化最大值为-1.63 eV。

Figure 6. (a) The corresponding stability structure diagram of the reaction intermediate along the reaction path of b; (b) Gibbs free energy distribution diagram of CO_2 reduction pathway toward CH_4 on 3TM- C_2N (numbers $0 \sim 8$ represent electron transfer numbers)

图 6. (a) 反应中间体沿 b 反应路径的对应稳定结构图; (b) 在 3TM-C₂N 上 CO₂还原产生 CH₄ 的 吉布斯自由能分布图(数字 0~8 代表电子转移数)

3.5. 生成 CH₄的极限电势

图 7 给出了 CO₂在 3Mn-C₂N、3Mo-C₂N、3Ru-C₂N 和 3Ti-C₂N 上还原为 CH₄ 的极限电势(U_L)。这里 近零的 U_L 表示容易生成该产物。生成 CH₄ 的 U_L 按递增排列都为 3Mn-C₂N < 3Ru-C₂N < 3Mo-C₂N < 3Ti-C₂N。综合来看, 3Mo-C₂N 和 3Ti-C₂N 整体性能较差, $|U_L| > 0.9$ V 说明反应需要吸收大量的能量而 较难发生。性能最好的催化剂是 3Mn-C₂N。在 3Mn-C₂N 上生成 CH₄ 的极限电势是-0.44 V,表现出较好 的催化活性,是四种催化剂中所需能量最低的。分析表明, 3TM-C₂N 催化 CO₂RR 是可以实现的。我们 的工作探索了 3TM-C₂N 在较低电极电位的电催化下对 CO₂深度加氢具有优异的性能。尤其是 3Mn-C₂N 在四种催化剂中性能最好。这一结果表明,C₂N 负载的过渡金属三聚体催化剂具有良好的 CO₂RR 潜力。

Figure 7. The calculated values of U_L (in V) for the production of CO₂ to CH₄ on 3TM-C₂N 图 7. CO₂在 3TM-C₂N上还原生成 CH₄时的 U_L (V)计算值

4. 结论

总之,本工作通过密度泛函理论计算,设计了 3TM-C₂N (TM = Mn, Mo, Ru, Ti)的模型作为催化剂, 讨论 3TM-C₂N 电催化还原 CO₂为 CH₄的催化性能。计算表明,锚定在 C₂N 上的锰、钼、钌和钛三聚体 构成了稳定的催化剂。6.67~6.79 eV/atom 的内聚能表现出强的稳定性。过渡金属三聚体和 C₂N 之间明显 的电荷密度积累、明显的轨道重叠和大量的电荷转移是 3TM-C₂N 整体结构高稳定性的原因。CO₂吸附表 明,3TM-C₂N 通过三角形结构和 TM 活性位点的协同作用,为 CO₂吸附和初始活化提供了有利的环境。 CO₂在 3TM-C₂N 上的吸附能在-0.63~-3.10 eV 范围内。O-C-O 键角的弯曲以及 C-O 键长从 1.20~1.42 Å 都说明了 CO₂ 的有效活化。吉布斯自由能的计算表明,3TM-C₂N 对 CO₂ 较强的吸附以及对中间体 *COOH/*OCHO 较低的吉布斯自由能表现出对 HER 良好的抑制性。极限电势表明,3Mn-C₂N 表现出最 好的催化活性,其将 CO₂还原为 CH₄ 的速率限制步骤是*COH → *HCOH, U_L为-0.44 V。

基金项目

本研究得到国家自然科学基金资助(批准号: 12174035)。

参考文献

- Barnhart, C.J., Dale, M., Brandt, A.R. and Benson, S.M. (2013) The Energetic Implications of Curtailing versus Storing Solar- and Wind-Generated Electricity. *Energy & Environmental Science*, 6, 2804-2810. <u>https://doi.org/10.1039/c3ee41973h</u>
- [2] Mohd Adli, N., *et al.* (2021) Engineering Atomically Dispersed FeN₄ Active Sites for CO₂ Electroreduction. *Angewandte Chemie International Edition*, **60**, 1022-1032. <u>https://doi.org/10.1002/anie.202012329</u>
- [3] Ananthaneni, S., Smith, Z. and Rankin, R.B. (2019) Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO₂. *Catalysts*, **9**, Article No. 604. <u>https://doi.org/10.3390/catal9070604</u>
- [4] Fernandes, D.M., Peixoto, A.F. and Freire, C. (2019) Nitrogen-Doped Metal-Free Carbon Catalysts for (Electro)Chemical CO₂ Conversion and Valorisation. *Dalton Transactions*, 48, 13508-13528. <u>https://doi.org/10.1039/C9DT01691K</u>
- [5] Kortlever, R., Shen, J., Schouten, K.J.P., Calle-Vallejo, F. and Koper, M.T.M. (2015) Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. *The Journal of Physical Chemistry Letters*, 6, 4073-4082. <u>https://doi.org/10.1021/acs.jpclett.5b01559</u>
- [6] Li, X., et al. (2020) Opportunity of Atomically Thin Two-Dimensional Catalysts for Promoting CO₂ Electroreduction. Accounts of Chemical Research, 53, 2964-2974. <u>https://doi.org/10.1021/acs.accounts.0c00626</u>
- [7] Chen, H., et al. (2019) Catalytic Effect on CO₂ Electroreduction by Hydroxyl-Terminated Two-Dimensional Mxenes. ACS Applied Materials & Interfaces, 11, 36571-36579. <u>https://doi.org/10.1021/acsami.9b09941</u>
- [8] Li, T., Yang, C., Luo, J.-L. and Zheng, G. (2019) Electrolyte Driven Highly Selective CO₂ Electroreduction at Low Overpotentials. ACS Catalysis, 9, 10440-10447. <u>https://doi.org/10.1021/acscatal.9b02443</u>
- [9] Sun, Y., Gao, S., Lei, F. and Xie, Y. (2015) Atomically-Thin Two-Dimensional Sheets for Understanding Active Sites in Catalysis. *Chemical Society Reviews*, **44**, 623-636. <u>https://doi.org/10.1039/C4CS00236A</u>
- [10] Kibria, M.G., *et al.* (2019) Electrochemical CO₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. *Advanced Materials*, **31**, e1807166. <u>https://doi.org/10.1002/adma.201807166</u>
- [11] Lu, B., Liu, Q. and Chen, S. (2020) Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis, 10, 7584-7618. <u>https://doi.org/10.1021/acscatal.0c01950</u>
- [12] Li, H., Zhao, Z., Cai, Q., Yin, L. and Zhao, J. (2020) Nitrogen Electroreduction Performance of Transition Metal Dimers Embedded into N-Doped Graphene: A Theoretical Prediction. *Journal of Materials Chemistry A*, 8, 4533-4543. <u>https://doi.org/10.1039/C9TA13599E</u>
- [13] Ouyang, Y., Shi, L., Bai, X., Li, Q. and Wang, J. (2020) Breaking Scaling Relations for Efficient CO₂ Electrochemical Reduction through Dual-Atom Catalysts. *Chemical Science*, **11**, 1807-1813. <u>https://doi.org/10.1039/C9SC05236D</u>
- [14] Cui, X., et al. (2018) C₂N-Graphene Supported Single-Atom Catalysts for CO₂ Electrochemical Reduction Reaction: Mechanistic Insight and Catalyst Screening. Nanoscale, 10, 15262-15272. <u>https://doi.org/10.1039/C8NR04961K</u>
- [15] Wang, X., et al. (2018) Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO₂. Angewandte Chemie International Edition, 57, 1944-1948. <u>https://doi.org/10.1002/anie.201712451</u>

- [16] Jiang, K., et al. (2017) Transition-Metal Single Atoms in a Graphene Shell as Active Centers for Highly Efficient Artificial Photosynthesis. Chem, 3, 950-960. <u>https://doi.org/10.1016/j.chempr.2017.09.014</u>
- [17] Yang, F., et al. (2018) Highly Efficient CO₂ Electroreduction on ZnN4-Based Single-Atom Catalyst. Angewandte Chemie International Edition, 57, 12303-12307. <u>https://doi.org/10.1002/anie.201805871</u>
- [18] Zha, W., et al. (2021) Efficient Electrochemical CO₂ Reduction on C₂N Monolayer Supported Transition Metals Trimer Catalysts: A Daft Study. Applied Surface Science, 564, Article ID: 150331. https://doi.org/10.1016/j.apsusc.2021.150331
- [19] Zhou, S., et al. (2021) Triple-Atom Catalysts 3TM-GYs (TM = Cu, Fe, and Co; Gy = Graphyne) for High-Performance CO₂ Reduction Reaction to C1 Products. *Applied Materials Today*, 25, Article ID: 101245. https://doi.org/10.1016/j.apmt.2021.101245
- [20] Chen, Z.W., Chen, L.X., Yang, C.C. and Jiang, Q. (2019) Atomic (Single, Double, and Triple Atoms) Catalysis: Frontiers, Opportunities, and Challenges. *Journal of Materials Chemistry A*, 7, 3492-3515. https://doi.org/10.1039/C8TA11416A
- [21] Siahrostami, S., et al. (2020) A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 10, 7495-7511. <u>https://doi.org/10.1021/acscatal.0c01641</u>
- [22] Mahmood, J., et al. (2015) Nitrogenated Holey Two-Dimensional Structures. Nature Communications, 6, Article No. 6486. <u>https://doi.org/10.1038/ncomms7486</u>
- [23] Ma, D.W., et al. (2016) 3d Transition Metal Embedded C₂N Monolayers as Promising Single-Atom Catalysts: A First-Principles Study. Carbon, 105, 463-473. <u>https://doi.org/10.1016/j.carbon.2016.04.059</u>
- [24] Hafner, J. (2008) Ab-Initio Simulations of Materials Using Vasp: Density-Functional Theory and Beyond. Journal of Computational Chemistry, 29, 2044-2078. <u>https://doi.org/10.1002/jcc.21057</u>
- [25] Kresse, G.G. and Furthmüller, J.J. (1996) Efficient Iterative Schemes for *Ab Initio* Total-Energy Calculations Using a Plane-Wave Basis Set. *Physical Review B, Condensed Matter*, **54**, Article No. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- [26] Marsman, M. and Kresse, G. (2006) Relaxed Core Projector-Augmented-Wave Method. Journal of Chemical Physics, 125, Article No. 17953. <u>https://doi.org/10.1063/1.2338035</u>
- [27] John, et al. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
- [28] Gong, L., Chen, J.J. and Mu, Y. (2017) Catalytic CO₂ Reduction to Valuable Chemicals Using Nife-Based Nanoclusters: A First-Principles Theoretical Evaluation. *Physical Chemistry Chemical Physics*, **19**, 28344-28353. <u>https://doi.org/10.1039/C7CP06155B</u>
- [29] Zhang, B., Fu, X.L., Song, L. and Wu, X.J. (2020) Computational Screening toward Hydrogen Evolution Reaction by the Introduction of Point Defects at the Edges of Group IVA Monochalcogenides: A First-Principles Study. *Journal of Physical Chemistry Letters*, **11**, 7664-7671. <u>https://doi.org/10.1021/acs.jpclett.0c02047</u>
- [30] Zhang, R., Li, B. and Yang, J. (2015) Effects of Stacking Order, Layer Number and External Electric Field on Electronic Structures of Few-Layer C₂N-h2d. Nanoscale, 7, 14062-14070. <u>https://doi.org/10.1039/C5NR03895B</u>
- [31] Zhou, S., et al. (2020) Carbon Phosphides: Promising Electric Field Controllable Nanoporous Materials for CO₂ Capture and Separation. Journal of Materials Chemistry A, 8, 9970-9980. <u>https://doi.org/10.1039/D0TA03262J</u>
- [32] Hu, W., Wu, X., Li, Z. and Yang, J. (2013) Porous Silicene as a Hydrogen Purification Membrane. *Physical Chemistry Chemical Physics*, 15, 5753-5757. <u>https://doi.org/10.1039/c3cp00066d</u>
- [33] Zhang, B., Fu, X., Song, L. and Wu, X. (2021) Improving Hydrogen Evolution Reaction Performance by Combining Ditungsten Carbide and Nitrogen-Doped Graphene: A First-Principles Study. *Carbon*, **172**, 122-131. <u>https://doi.org/10.1016/j.carbon.2020.10.003</u>