# 手机性价比分析

# ——基于因子分析、聚类分析

#### 谢文

北方工业大学, 北京

收稿日期: 2022年9月10日; 录用日期: 2022年9月30日; 发布日期: 2022年10月14日

#### 摘要

随着手机业务和手机市场的不断开展和开拓,市面上开始出现各种各样的手机。为了帮助人们购买性价 比更高的手机,本文将利用因子分析和聚类分析,依据某品牌旗下的手机进行性价比计算。通过分析我 们不难发现,高品质的手机在性价比上不占据优势,而价格极低的手机,同样性价比堪忧。

#### 关键词

因子分析, 性价比, 聚类分析

# **Cost Performance Analysis of Mobile Phones**

# -Based on Factor Analysis and Cluster Analysis

#### Wen Xie

North University of Technology, Beijing

Received: Sep. 10<sup>th</sup>, 2022; accepted: Sep. 30<sup>th</sup>, 2022; published: Oct. 14<sup>th</sup>, 2022

#### **Abstract**

With the continuous development of mobile phone business and mobile phone market, various mobile phones have appeared in the market. In order to help people buy more cost-effective mobile phones, this paper will use factor analysis and cluster analysis, based on a brand of mobile phones for cost-effective calculation. Through the analysis we can easily find that high-quality mobile phones do not occupy an advantage in cost-effective, and the price of very low mobile phones, the same cost-effective worrying.

文章引用: 谢文. 手机性价比分析[J]. 统计学与应用, 2022, 11(5): 1106-1112. DOI: 10.12677/sa.2022.115113

#### **Keywords**

#### **Factor Analysis, Cost Performance, Cluster Analysis**

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/



Open Access

#### 1. 前言

随着科学技术的不断进步,手机在生活中扮演者举足轻重的角色。随着手机市场蓬勃发展,各种各样的手机开始不断推出,为了吸引消费者,手机运营商开始各种花里胡哨的宣传。为了购买到好的手机,我们对产品进行性价比的比较。其中性价比就是指价格和性能之间的一个比值,性价比高的商品价格低产品性能好。

"性价比"一词最早出现在计算科学领域,用于反映算法的复杂度与精度之间的关系,而"性价比"的概念逐渐被推广和应用是在价值工程的基础上延伸起来的,一些学者从"价值工程"的"价值"中延伸出了"性价比",即产品的功能和实现该功能所需成本的比值。比如,任宏等[1]、向鹏成等[2]利用价值工程理论构建了商品住宅"性价比"的确定方法; Ikeya 等[3]、吴正斌等[4]分析了不同成本的电池对电动汽车"价比"的影响; 董巧婷等[5]、韩正民[6]推广了"性价比"评标方法的原理及其模型的应用。

对于性价比的求法,其中一个值是价格,价格有明码标价,容易得到准确的数据。但是性能指标不容易给出,性能指标属于定量分析,一般情况由专业人员评经验给出。本次研究中的影响手机性能的因素非常多,其中处理器就有十几种,各种 cpu 分别来自不同的公司,性能有好有坏,各有缺点,对手机性能的评估造成了很大的困难。我们尝试从手机的各个角度分别抽取指标进行评估,对抽取出来的指标进行因子分析,计算各个手机的综合评分,然后利用价格,构造一个能够反映性价比的统计量。再可以利用聚类分析,对所有的手机进行分类,辅助证明手机性价比排行的情况。

#### 2. 样本和指标的选取

#### 2.1. 样本的选择

现在国内最大的手机品牌有华为、vivo、苹果等品牌,根据公司研究的侧重点,各个品牌的产品会呈现出各自的特点,比如华为手机的手机信号非常好,oppo 手机的音频播放非常的优秀,苹果手机的手机使用寿命长,为了减少品牌之间的差异,选择某品牌手机的一组数据,将所有的问题聚集在产品的本身性能上[7]。

#### 2.2. 指标的选择

各种手机产品在配置、功能方面有许多的不同之处,但是基本的构成是一样的,按照对手机的功能的需求,我们从计算、显示、存储、拍照、电池五大部分选取手机的性能指标,选取的指标有 CPU 型号、分辨率、屏幕类型、屏幕尺寸、运行内存、机身内存、摄像头的数目、主摄像头的像素、防抖模式、光圈、充电器类型、电池容量[8]。

#### 3. 对样本指标的处理

从上面的数据可以看出,手机的指标大多数是定性指标,无法进行从进行计算,无法从指标之间探

索关系。为了使样本之间可以比较,顺利进行数据分析,我们要对所有样本的指标的性能进行量化处理。 对于数据的处理,根据产品指标的型号进行分类,等级越高性能越好。处理后的样本数据如下表 1。

Table 1. Sample dataset 表 1. 样本数据集

| 传播名   | 价格    | 电池<br>容量 | 充电器<br>类型 | 摄像头<br>的数目 | 主摄像头<br>的像素 | 光圈 | 防抖<br>模式 | 屏幕<br>尺寸 | 分辨率 | 屏幕<br>类型 | 运行<br>内存 | 机身<br>内存 | CPU<br>型号 |
|-------|-------|----------|-----------|------------|-------------|----|----------|----------|-----|----------|----------|----------|-----------|
| 产品A   | 17799 | 7        | 4         | 5          | 4           | 2  | 3        | 7        | 9   | 5        | 3        | 3        | 9         |
| 产品B   | 1699  | 4        | 1         | 3          | 3           | 1  | 1        | 1        | 4   | 5        | 2        | 2        | 3         |
| 产品C   | 5099  | 5        | 3         | 3          | 6           | 2  | 3        | 2        | 3   | 5        | 3        | 3        | 7         |
| 产品D   | 1199  | 9        | 1         | 2          | 1           | 1  | 1        | 1        | 1   | 1        | 1        | 2        | 1         |
| 产品E   | 5899  | 7        | 3         | 5          | 2           | 1  | 3        | 2        | 5   | 5        | 3        | 2        | 7         |
| 产品F   | 12999 | 7        | 3         | 5          | 2           | 1  | 3        | 2        | 5   | 5        | 5        | 5        | 7         |
| 产品G   | 4499  | 5        | 3         | 3          | 2           | 1  | 3        | 4        | 2   | 5        | 3        | 2        | 6         |
| 产品H   | 6299  | 6        | 4         | 3          | 4           | 2  | 3        | 5        | 8   | 5        | 3        | 2        | 9         |
| 产品 I+ | 8999  | 6        | 4         | 7          | 4           | 2  | 3        | 5        | 8   | 5        | 5        | 3        | 9         |
| 产品J   | 10999 | 6        | 4         | 7          | 4           | 2  | 3        | 5        | 8   | 5        | 3        | 3        | 9         |
| 产品K   | 4999  | 5        | 3         | 3          | 4           | 2  | 3        | 2        | 3   | 5        | 3        | 2        | 9         |
| 产品L   | 4099  | 4        | 3         | 3          | 6           | 1  | 1        | 3        | 2   | 5        | 3        | 3        | 5         |
| 产品M   | 2299  | 4        | 3         | 3          | 6           | 1  | 1        | 2        | 4   | 4        | 3        | 2        | 4         |
| 产品N   | 3999  | 4        | 4         | 3          | 6           | 1  | 2        | 5        | 7   | 5        | 3        | 2        | 5         |
| 产品O   | 7988  | 5        | 3         | 7          | 4           | 2  | 3        | 3        | 6   | 5        | 3        | 3        | 7         |
| 产品P   | 4488  | 3        | 2         | 3          | 4           | 2  | 3        | 1        | 2   | 5        | 3        | 2        | 7         |
| 产品Q   | 2499  | 5        | 3         | 3          | 3           | 1  | 1        | 4        | 4   | 2        | 3        | 2        | 2         |
| 产品R   | 1999  | 4        | 2         | 3          | 3           | 1  | 2        | 2        | 4   | 3        | 2        | 2        | 4         |
| 产品S   | 1499  | 9        | 1         | 3          | 1           | 1  | 1        | 4        | 1   | 2        | 1        | 1        | 2         |
| 产品T   | 2199  | 4        | 2         | 3          | 3           | 1  | 2        | 2        | 4   | 3        | 3        | 2        | 4         |

## 4. 对样本进行因子分析

将数据输入到 SPSS 软件中,使用 SPSS 进行因子分析的计算。通过 SPSS 得到表 2:

**Table 2.** KMO and Bartlett test **表 2.** KMO 和巴特利特检验

| KMO 取样适切  | 0.683 |         |
|-----------|-------|---------|
|           | 近似卡方  | 176.382 |
| 巴特利特球形度检验 | 自由度   | 66      |
|           | 显著性   | 0.000   |

根据表 2 KMO 和巴特利特检验中数据显示,KMO 检验的统计量分别是 0.683,判断其值接近于 1,因此检验效果较好,Bartley-sphere 检验的显著性检验结果应放弃原假设,认为相关系数矩阵与单位矩阵之间存在显著的相关关系,表明所选变量可以进行因子分析[9]。

**Table 3.** Explanation of total variance 表 3. 总方差解释

| 成分 |       | 初始特征值  |         |       | 提取载荷平方和 |        |
|----|-------|--------|---------|-------|---------|--------|
| 风刀 | 总计    | 方差百分比  | 累积 %    | 总计    | 方差百分比   | 累积 %   |
| 1  | 5.997 | 49.976 | 49.976  | 5.997 | 49.976  | 49.976 |
| 2  | 1.862 | 15.513 | 65.489  | 1.862 | 15.513  | 65.489 |
| 3  | 1.304 | 10.863 | 76.352  | 1.304 | 10.863  | 76.352 |
| 4  | 1.057 | 8.805  | 85.157  | 1.057 | 8.805   | 85.157 |
| 5  | 0.489 | 4.078  | 89.236  |       |         |        |
| 6  | 0.446 | 3.713  | 92.949  |       |         |        |
| 7  | 0.297 | 2.473  | 95.422  |       |         |        |
| 8  | 0.202 | 1.680  | 97.102  |       |         |        |
| 9  | 0.161 | 1.343  | 98.445  |       |         |        |
| 10 | 0.121 | 1.009  | 99.454  |       |         |        |
| 11 | 0.041 | 0.345  | 99.799  |       |         |        |
| 12 | 0.024 | 0.201  | 100.000 |       |         |        |

从表 3 总方差解释中信息可以看出,前四个特征值的方差贡献率已经达到了 85%以上了,从碎石图可以辅助判定选择前四个特征值即可,后面的特征值贡献率忽略。

对数据进行方差最大正交旋转,得到成分矩阵,如下表:

Table 4. The component matrix a after rotation 表 4. 旋转后的成分矩阵 a

|           | 成分 1   | 成分 2  | 成分 3   | 成分 4   |
|-----------|--------|-------|--------|--------|
| 光圏        | 0.868  | 0.251 | -0.006 | 0.095  |
| 防抖模式      | 0.864  | 0.126 | 0.355  | -0.029 |
| CPU 型号    | 0.836  | 0.330 | 0.354  | 0.158  |
| 屏幕类型      | 0.600  | 0.138 | 0.424  | 0.487  |
| 屏幕尺寸      | 0.134  | 0.939 | -0.014 | -0.073 |
| 分辨率       | 0.318  | 0.779 | 0.324  | 0.075  |
| 充电器类型     | 0.357  | 0.726 | 0.376  | 0.327  |
| 机身内存(ROM) | 0.147  | 0.063 | 0.908  | -0.006 |
| 运行内存(RAM) | 0.264  | 0.222 | 0.819  | 0.263  |
| 摄像头的数目    | 0.417  | 0.420 | 0.561  | -0.216 |
| 电池容量(mAh) | -0.021 | 0.192 | -0.019 | -0.899 |
| 主摄像头的像素   | 0.118  | 0.279 | 0.060  | 0.872  |

根据表 4 旋转后的成分矩阵 a 可以看到,在第一个主成分主要代表了光圈、防抖模式、CPU 型号、 屏幕类型。

在第二个主成分主要代表了屏幕尺寸、分辨率、充电器类型。

在第三个主成分主要代表了机身内存、运行内存、摄像头的数目。

在第三个主成分主要代表了电池容量、主摄像头的像素。

### 5. 性价比评比结果

通过因子分析得到样本的综合性能得分,再利用因子方差贡献率进行加权平均,得到样本性能的综合得分。

其中综合因子得分公式为: 综合得分 =  $\frac{\left(25.706\%*F_1+21.405\%*F_2+20.754\%*F_3+17.292\%F_4\right)}{85.157\%}$ 

通过计算可以得到最终的性能综合得分,见表 5。

**Table 5.** Overall score for money 表 5. 性价比综合得分

| 传播名  | 综合得分    |
|------|---------|
| 产品 A | 0.5928  |
| 产品B  | -0.4457 |
| 产品C  | 0.2756  |
| 产品D  | -1.1648 |
| 产品E  | -0.031  |
| 产品F  | 0.2443  |
| 产品G  | -0.0752 |
| 产品H  | 0.4464  |
| 产品I  | 0.7323  |
| 产品J  | 0.5973  |
| 产品K  | 0.1852  |
| 产品L  | 0.0343  |
| 产品M  | -0.0727 |
| 产品N  | 0.3094  |
| 产品O  | 0.3865  |
| 产品P  | 0.058   |
| 产品 Q | -0.373  |
| 产品 R | -0.3735 |
| 产品S  | -1.0202 |
| 产品T  | -0.306  |
|      |         |

从表中可以看到,其中有些数值是负值,综合得分只是表示产品性能的高低,并没有正负之分,所 以对数据进行统一化处理。

# 修正后的综合得分 = (综合得分 – 综合得分最低值) 综合得分的极差

将修正后的综合得分代入公式,计算综合性价比。 其中综合性价比的公式为:综合性价比=1000\*修正后的综合得分价格 计算结果如表 6。

**Table 6.** Revised overall value for money score 表 6. 修正后性价比综合得分

|       | 价格    | 综合性价比    |
|-------|-------|----------|
| 产品M   | 2299  | 2.503697 |
| 产品B   | 1699  | 2.230724 |
| 产品R   | 1999  | 2.086543 |
| 产品T   | 2199  | 2.058663 |
| 产品N   | 3999  | 1.943236 |
| 产品Q   | 2499  | 1.670268 |
| 产品L   | 4099  | 1.542083 |
| 产品C   | 5099  | 1.488919 |
| 产品P   | 4488  | 1.436275 |
| 产品K   | 4999  | 1.423485 |
| 产品I   | 6299  | 1.348309 |
| 产品G   | 4499  | 1.276506 |
| 产品 I+ | 8999  | 1.111235 |
| 产品〇   | 7988  | 1.02366  |
| 产品E   | 5899  | 1.013223 |
| 产品J   | 10999 | 0.84444  |
| 产品F   | 12999 | 0.571429 |
| 产品A   | 17799 | 0.520535 |
| 产品S   | 1499  | 0.508339 |
| 产品D   | 1199  | 0        |

从表 6 中我们可以清楚的看到,其中产品 M、产品 B、产品 R、产品 T 的性价比都是挺高的,他们的价格总体在两千左右,产品的综合性能也很高,购物的时候可以首选这四款手机。

其中还可以看到产品 S、产品 D 作为两款最便宜的手机,其实其性价比并不高,在综合性能上不占优势,而产品 J、产品 F、产品 A 的分数也很低,这三款手机的特点就是产品性能指标高,但是价格高的离谱,对于普通人而言手机的价格偏高,这类手机的特点是附赠的功能特别多,特别齐全,但是对于普通人而言可能根们用不上,所以并不建议购买。

## 参考文献

- [1] 任宏, 竹隰生, 曹跃进. 商品住宅经济性能评价研究[J]. 重庆建筑大学学报, 2000(2): 1-6.
- [2] 向鹏成、郭峰、任宏. 房地产性价比的确定方法[J]. 重庆大学学报(自然科学 125 版), 2006(7): 114-118.
- [3] Ikeya, T., Sawada, N., Takagi, S., Murakami, J.-I., Kobayashi, K., Sakabe, T., Kousaka, E., Yoshioka, H., Kato, S., Yamashita, M., Narisoko, H., Mita, Y., Nishiyama, K., Adachi, K. and Ishihara, K. (2000) Charging Operation with High Energy Efficiency for Electric Vehicle Valve-Regulated Lead-Acid Battery System. *Journal of Power Sources*, 91, 130-136. https://doi.org/10.1016/S0378-7753(00)00414-6
- [4] 吴正斌, 胡坚耀, 李程宇. 低速电动汽车的性能研究[J]. 集成技术, 2015, 4(1): 8-15.
- [5] 董巧婷, 解海顺, 李明. 评标价确定方法研究[J]. 建筑经济, 2007(8): 105-108.
- [6] 韩正民. 性价比评标法原理与应用模型研究[J]. 经营管理者, 2016(23): 236-237.
- [7] 巫颖辉. 手机性价比模型的构建[J]. 中国西部科技, 2015, 14(9): 124-128.
- [8] 向鹏成, 郭峰, 任宏. 房地产性价比的确定方法[J]. 重庆大学学报(自然科学版), 2006(7): 114-118.
- [9] 刘红玉, 张景川. 基于主成分分析和聚类分析的区域农业竞争力分析[J]. 通化师范学院学报, 2021, 42(10): 45-50.