Validation of New Gravity Universal Metric in Galaxy Luminosity and Galaxy Groups and Clusters

Xun Huang*

Ningjiang Middle School in Xingning, Xingning Guangdong Email: huangxun522@163.com

Received: Sep. 26th, 2016; accepted: Oct. 11th, 2016; published: Oct. 18th, 2016

Copyright © 2016 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC O Open Access

Abstract

With the new cosmic gravity metric, the author gets the new equation of the new luminosity and the luminosity distance to draw the luminosity distance diagram of all the redshifts, which is a line cluster with slope = 0.5. Every luminosity can be shown accurately in this diagram. Point coordinates of luminosity's diagram (L-L) gather on both sides of diagonal closely and regularly. All the redshifts can be drawn into diagram. There isn't any diagram like this in standard cosmology. Through calculation and analysis, we can learn that galaxy groups and clusters of high redshift should be the Great Wall of galaxies. All physical quantities in the galaxy are influenced by basically well-distributed gravity effect in the universe and it increases as the redshift's value increases. In the following discussion, there is only one cosmic horizon constant and all the physical quantities observed on the galaxy with all redshifts can be analyzed without dark energy.

Keywords

Infrared Flux Density, Universal Horizon, Luminosity Diagram, Galaxy Groups and Clusters

新引力宇宙度规在星系光度和星系团的验证

黄 洵*

广东省梅州市兴宁市宁江中学,广东 兴宁 Email: huangxun522@163.com

*中学数学高级教师。

收稿日期: 2016年9月26日; 录用日期: 2016年10月11日; 发布日期: 2016年10月18日

摘要

新引力宇宙度规导出新光度和光度距离方程,可以绘出全部红移的光度距离图,是斜率为0.5的直线簇, 能对每个光度在图中精确表述。光度(L-L)图的点坐标集中在对角线两旁,紧凑有规律分布,全部红移 绘出图。标准宇宙学没有这样的图。计算分析高红移星系团应该是星系长城局域。星系所有观测的物理 量都受到宇宙基本均匀的引力效应,随红移值增大宇宙基本均匀引力增强。下面讨论中只有一个宇宙视 界恆量,不用暗能量可以分析星系的全红移的光度距离图。

关键词

红外通量密度,宇宙视界,光度图,星系团

1. 引言

当代主流学者们认为标准宇宙学是宇宙终极理论,己无懈可击。而現在任何权威学者的宇宙论著作中,可以举出很多宇宙观测数据无法解析的内容,下文仅从两个方面存在问题来分析讨论(还有很多问题 另文讨论) 1)先由红外光度与距离的 log L_{3.6N} (横轴) - log d_L (纵轴)图,标准宇宙学存在缺点之一,与新 引力宇宙度规导出红外光度与距离进行比较。2)标准宇宙学认为天文观测极小范围集中几十至几百个星 系集群,当代普遍认为是星系团,据表(1)¹,表(2)²中红移 Z 和红外通量 S_{3.6µm},作者们用标准宇宙学的 光度计算出 L_{3.6B}比较,并结合新引力宇宙度规导出的光度 L_{3.6N} 计算值,经仔细分析比较,发现表(1)¹ 和 表(2)² 的 L_{3.6B} 与 L_{3.6N} 有重大问题,是标准宇宙学存在重大缺点之一,新引力宇宙度规的光度,用全新的 理论分析星系红外光度的精确分布,L_{3.6B} 的具体方程,文献中没有统一公认的光度方程,此处无法给出。 可以用新的光度距离进行理论分析距离与光度图和光度(L-L)图结构分布状况,具体到每个点坐标在图 中所处的精确位置。通过理论分析不凭图都能了解点坐标的分布状况。后续文章给出类似图说明。新引 力宇宙度规分析高红移星系团应该是星系长城局域。对标准宇宙学的存在缺陷会在后续文章逐一介绍讨 论并给予新的解析,不能在此详述。

2. 新引力宇宙度规红外通量密度 S_{3.6µm} 的光度计算

新引力宇宙度规的经典距离是(以下方程没有给出推导过程,主要以应用验证)

$$r = r_s \left(1 - \mathrm{e}^{-z} \right) \tag{1}$$

新引力宇宙度规的红外光度方程是

$$L_{N} = 4\pi d_{L}^{2} S_{\lambda} (c/\lambda) = 8\pi r_{s}^{2} S_{\lambda} (c/\lambda) (\cosh Z - 1) (W) \circ$$

$$\overrightarrow{\mathbf{R}} L_{N} = 8\pi r_{s}^{2} \nu F_{\nu} (\cosh Z - 1) (W)$$
(2)

前方程用波长和通量密度表述的光度,后方程用频率和辐射流量表述的光度,具体到 3.6 μm 的光度 时(据表(1)¹,表(2)²中所给出单位导出),简化为

¹II/326/zcatrevPost annotationRevised SWIRE photometric redshifts (Rowan-Robinson+, 2013) [DB] Revised SWIRE photometric redshift catalogues (1009607 rows) VizieR <u>http://vizier.u-strasbg.fr/viz-bin/VizieR-4</u> ²II/290/finalcatPost annotationSWIRE Photometric Redshift Catalogue (Rowan-Robinson+, 2008) [DB]. SWIRE photometric redshift cata-

⁻II/290/finalcatPost annotationSWIRE Photometric Redshift Catalogue (Rowan-Robinson+, 2008) [DB]. SWIRE photometric redshift catalogue (1066876 rows) <u>http://vizier.u-strasbg.fr/viz-bin/VizieR-4</u>

黄洵

Table 1. The first three columns are the original data of Table (1), and the fourth column is the calculated value of Equation (2a). The value of the third column is smaller than that of the fourth column

<i>S</i> _{3.6μm} μJy	Ζ	$\log L_{3.6B} [L_{sun}]$	$\log L_{3.6N} [L_{sun}]$
46.17	0.439	9.56	9.9471
10.26	0.549	9.04	9.4920
9.58	0.300	8.60	8.9297
94.89	0.854	10.23	10.8572
14.48	0.923	9.49	10.1126
43.12	1.280	10.24	10.6656
15.55	0.521	9.23	9.2620
17.33	0.914	9.55	10.1815
79.40	0.242	9.23	9.6260
155.99	0.107	8.92	9.2431
576.70	0.607	10.78	11.3315
726.35	0.197	10.12	10.4199
74.66	3.571	11.55	12.3900
27.26	3.130	10.87	11.7469
14.27	4.346	10.81	12.0214
6.87	3.111	10.24	11.1393
6.33	0.158	7.38	8.1959
18.19	4.154	10.88	12.0409
43.91	3.989	11.16	12.3496
6.99	0.138	7.80	8.1158
13.53	1.118	9.62	10.2624
11.55	1.109	9.55	10.1858
99.29	0.507	9.99	10.4056
86.90	1.032	10.37	10.9940
163.41	0.033	7.93	8.2398
76.34	0.282	9.46	9.7756
17.95	0.871	9.56	10.1508
11.82	3.111	10.05	11.3735
96.62	0.219	9.23	9.6571
8.03	0.995	9.28	9.9282

表 1. 表中前 3 列是表(1)原数据, 4 列是方程(2a)计算值。3 列值小于 4 列值

 $\log(L_{3.6N}/L_{sun}) = 9.29046 + \log[S_{3.6}(\cosh Z - 1)]$

(2a)

其中新引力宇宙度规的光度距离是

$$d_{L} = 2r_{s}\sinh(z/2) = 2 \times 6132.1\sinh(z/2)(\text{Mpc})$$
(3)

太阳光度 $L_{sun} = 3.826 \times 10^{26}$ W,宇宙视界是上世纪定出,约为 $r_s \approx 20$ GI·y = 6132.1 Mpc = 1.892×10²⁶ m

Table 2. The first three columns are the original data of Table (2), and the fourth column is the calculated value of Equation (2a). The value of the third column is larger than that of the fourth column

Ζ	$\log L_{3.6B}$ $[L_{sun}]$	$egin{array}{c} \log L_{3.6N} \ [L_{sun}] \end{array}$
0.340	9.74	9.3538
0.400	9.32	8.8114
0.318	9.46	9.2849
0.054	10.30?	10.5877
0.252	9.48	8.9729
0.402	9.89	9.3847
0.326	9.59	9.1694
0.368	10.02	9.7621
0.534	10.05	9.8067
0.334	9.44	9.0155
0.217	8.96	8.5588
0.168	10.11	9.6648
0.062	9.42	8.9979
0.302	10.05	9.6850
0.134	10.06	9.8328
0.694	9.26?	10.1042
0.112	9.45	8.9817
0.306	10.11	9.6713
0.620	10.15	9.4295
0.216	10.57	10.2314
0.012	8.96	8.538
0.144	9.41	8.9713
0.288	9.44	9.0720
0.534	10.50	9.8053
0.334	9.44	9.0141
0.188	9.42	8.988
0.050	8.99	8.5806
0.294	9.66	9.2805
0.294	9.32	8.9349
0.188	9.98	9.5359
	Z 0.340 0.400 0.318 0.054 0.252 0.402 0.326 0.368 0.534 0.334 0.217 0.168 0.062 0.302 0.134 0.694 0.112 0.306 0.620 0.216 0.012 0.144 0.288 0.534 0.334 0.334 0.534 0.334 0.534 0.534 0.534 0.534 0.534 0.534 0.534 0.526 0.520 0.216 0.012 0.144 0.288 0.534 0.334 0.334 0.534 0.534 0.534 0.520 0.216 0.012 0.144 0.288 0.534 0.334 0.534 0.534 0.534 0.534 0.536 0.520 0.216 0.012 0.144 0.288 0.534 0.534 0.534 0.534 0.534 0.536 0.520 0.216 0.012 0.144 0.288 0.534 0.534 0.534 0.534 0.534 0.520 0.216 0.012 0.144 0.288 0.534 0.534 0.534 0.534 0.534 0.520 0.216 0.022 0.120 0.144 0.288 0.534 0.534 0.534 0.534 0.534 0.534 0.520 0.216 0.022 0.120 0.120 0.144 0.534 0.529 0.5294 0.2294 0.188	Z logL3.68 [L.sun] 0.340 9.74 0.400 9.32 0.318 9.46 0.054 10.30? 0.252 9.48 0.402 9.89 0.326 9.59 0.368 10.02 0.534 10.05 0.334 9.44 0.217 8.96 0.168 10.11 0.062 9.42 0.302 10.05 0.134 10.06 0.694 9.26? 0.112 9.45 0.306 10.11 0.620 10.15 0.216 10.57 0.012 8.96 0.144 9.41 0.288 9.44 0.534 10.50 0.334 9.44 0.534 10.50 0.334 9.44 0.534 9.59 0.294 9.66 0.294 9.32 0.188

表 2. 表中前 3 列是表(2)原数据, 4 列是方程(2a)计算值。3 列值大于 4 列值

表中的?表示原文计算有错,表(1)的光度距离比表(2)小。The ? in the table indicates that there are some mistakes with the calculation in original literature, Value of luminosity distance in Table (1) is small than Table (2).

 $(GI·y = 10^9 光年, Mpc = 10^6 秒差距)(文献[1] (p. 69)书中称为理论值,经验证置信度高,但不精确)。近似于哈勃年龄<math>H_0^{-1}(50) = 19.7 \times 10^9$ 年。下面表中 log $L_{3.6B}$ (值为 log $(L_{3.6B}/L_{sun})$)。

查表(1),表(2)中红移 z 和通量 $S_{_{3.6\,\mu m}}$, $L_{_{3.6B}}$,列表如下,表中各列 30 例,足于说明,表 1 中前 3 列

是表(1)原数据, 4 列是方程(2a)计算值。表 2 中前 3 列是表(2)原数据, 4 列是方程(2a)计算值。2 种宇宙 学的光度比较。

黄洵

表(1)的红移是 0.01 < Z < 5,表(2)的红移是 0.01 < Z < 1。表(1)高红移比表(2)多。从上面表 1 中看出 第 3 列是表(1)的光度,表 2 中第 3 列是表(2)的光度,表(1)的光度比表(2)的光度整体暗(值小)。两表中第 4 列是 $\log L_{3.6N}$,是前述表(1),表(2)的中间值。或者说,表(1)的光度小于 $\log L_{3.6N}$,表(2)的光度大于 $\log L_{3.6N}$ 。 从表(1),表(2)直测的通量 S_{λ} 值分析,随红移的增加而通量值逐渐减小,是正常规律。计算表(1),表(2) 的光度应具有连续性,即光度符合随红移的增加而光度增亮,但是从表 1 中,是表(1)的 $S_{3.6}$ =14.48, Z = 0.923, $\log L_{3.6B} = 9.49$, $\log L_{3.6N} = 10.1126$ 。表 2 中是表(2)的 $S_{3.6} = 14.07$, Z = 0.326, $\log L_{3.6B} = 9.59$, $\log L_{3.6N} = 9.1694$ 。比较知 2 个 $\log L_{3.6B}$ 值不合理, 2 个 $L_{3.6N}$ 值合理,符合随红移的增加而光度增亮(值大)。 表(1),表(2)中全部都是上述情况,原因是表(1),表(2)的作者们所用的光度距离各不相同(2 个表都是同 一英国天文台的星系、类星体表,观测数据较全量多,很有理论分析的价值。隔 5 年公布,2 个表及文 献[2] [3],作者以 Michael Rowan-Robinson (英国皇家理工学院名教授)为首,不知什么原因光度距离没有 统一),标准宇宙学的光度距离没有统一,也无统一规范的距离光度图。表(1),表(2)的作者们论文不能绘 出规范的距离光度图,是不允许的,是标准宇宙学重大缺点之一。在《开放的超新星目录》(The Open Supenova Catalog) <u>https://sne.space/</u> (2016 年 6 月)有更广泛的分析,另文讨论。

现在可以用新引力宇宙度规的光度方程(2a)和光度距离方程(3)绘出表(1),表(2)的距离 - 光度图,即 log *L*_{3.6N} (横轴)一log *d*_L (纵轴)图,简称红外距离光度 dzL_{FalR}图。查表(1),表(2)有下面 2 种情况,是绘制 dzL_{FalR}图时发现的情况。据附录 2 通量 *S*_{3.6}定值,红移 *Z* 非定值时(注:下面计算时宇宙视界值横轴以 m 为单位,纵轴以 Mpc 为单位,后面计算以此为据)。

红外通量密度 *S*_{3.6} = 9.75 时, 附录 2 红移 *Z* 分别值计算 6 个点坐标分别是(9.95882, 3.77704), (9.91434, 3.75480), (9.49229, 3.54377), (10.26119, 3.92822), (9.50331, 3.54928), (10.10511, 3.85018)。(注: 有效数 字多,便于验算)任选上述 2 点坐标值计算直线斜率近似值是 0.5。6 个点坐标在斜率 0.5 直线上。若用 (log *L*_{36N}, log *d*_L)中以红移 *Z*₁, *Z*₂和 *S*₃₆定值计算直线斜率是 0.5。其余情况相同。

红移 Z 定值时,据附录 2, Z = 1.312 时, S_{3.6}分别是 65.84(1315), 35.79(2776), 14.95(2875), 17.35(4204), 63.97(4243), 7.34(30579)。纵坐标是 3.936,横坐标对应分别是 11.107, 10.842, 10.463, 10.527, 11.094, 10.159。那么这 6 个点在距离横轴 3.936 的平行线上的点列(据表(1)估算约 110 个点列,现在只给出 6 个 点列)。同法知其余情况相同。

假设一个红移 Z = 1.312 的星系上测出一颗超新星爆炸过程中的辐射流量 F_{λ} ,随观测时间增加 F_{λ} 从小快速增大到最大后,慢慢小到初始值或更小;这超新星的红移是不变量,所测 F_{λ} 是变量,则计算的 $\log L_{F_{\lambda}}$ 也是变量,在 dzL 图中距离横轴 3.936 的平行线上的点列,这些点列似伸缩弹簧的点排列。不用举具体例子,很好理解。

通过上面 2 例知道 dzL_{FalR} 图是斜率 0.5 的直线簇,现在可以把表 1,表 2 中全部 S_{3.6}-Z 合并绘 dzL_{FalR} 图,共有 2076483 个点坐标,通量界值约是 $3 < S_{3.6} < 6000$ (可能超出 6 千,表中超千值概率小,而且在 Z < 1内),所有点坐标,在以 $S_{3.6} = 3$, $S_{3.6} = 6000$ 为定值(红移任取值),以斜率 0.5 的 2 条直线之间。还 有很多点坐标不在上述 2 种情况,2 个以上点坐标共点(天球坐标不同点,但 $ZS_{3.6}$ 完全相同的概率极小) 概率极小。图中点坐标很多不属于 2 种情况,亦是正常情况。所有符合表 1,表 2 全部 S_{λ} , Z 点坐标,都能在 dzL_{FalR} 图精确表出。此处没有绘出 dzL_{FalR} 图,读者据上述介绍可以据表 1 绘出简图理解,不复杂(此处没有绘出图,另文很多类似图供参考)。要具体分析普通星系,活动星系。星爆星系,类星体等的物理 特性,必须具体绘图才能辩别清楚。

3. 星系红移与红外光度图的讨论

据文献[4]附录 1 图 1 是(作者称) L-Z (可称为红移光度图,简称 ZL 图),是标准宇宙学用计算机软件绘图,因标准宇宙学的光度计算参数随红移的增加而增加并变化,该图只能绘出 Z < 1 的图。据上面分析,完全可以绘全红移 ZL 图,并且用计算机软件绘出更规范有规律可循的图。*S*₂为定值,红移 Z 非定值时,这些点构成 ZL 曲线,这 ZL 曲线合成 ZL 曲线簇。

如果修改为 log *L* - log *Z* 图, 广义相对论定为光锥光度图。也是全红移曲线簇。红外通量密度 *S*_{3.6} = 9.75 时,前 5 段 6 个点坐标改为(log *L*_{3.6N}, *Z*)或(log *L*_{3.6N}, log *Z*)所绘的曲线是光滑的;通量密度 *S*_{3.6µ} 定值时,红移 Z 非定值附录 2,都能绘成光滑曲线。成为全红移 ZL 曲线簇。文献[7]图 1、5、10、16、 19 都是 ZL 图,图 1、5 红移 Z < 3,图 10 红移 Z < 0.2,图 16 红移 Z < 2.5,图 19 红移 Z < 2,仔细分析 5 个图结构;文献[2] [4] [7]图关键之处是通量密度定值,红移 Z 非定值时,他们不能绘成 ZL 光滑曲线! 文献[2] [4] [7]图不能将表 1,表 2 绘全红移 ZL 图曲线。

在把表 1 中有 $S_{4.5 \mu m}$,结合方程(2)和 $S_{3.6 \mu m}$ 可以绘出($\log L_{3.6N}$, $\log L_{4.5N}$)图,文献称为红外光度(L-L)_{FalR} 图,和可见光的(L-L)图相同。点坐标有规律紧凑地靠在对角线两旁,是全红移图。此处亦没有给出图,读者据表 1,表 2 绘出简图理解。文献[4]附录 1 图 2 的(L-L)_{FalR}2 个图红移 z < 0.5。比图 1 红移小 1 倍,更差。而且图 2 左图点坐标离散宽,方程(2)计算的(L-L)_{FalR}图不出现此图象。文献[7]图 18 右 图的点坐标十分分散,无规律可循。

4. 红移 Z > 0.01 星系团的新分析

文献[5] (p. 423): 星系团的图象显示所有几乎位于同一距离的成员星系,它们的视星等和角径都分布 在很大的范围内。是当代难题之一,现在可用解析视星等产生的辐射流量 F_{λ} 计算的光度 dzL 图的分布。 文献[6]中给出三个星系团的唯象型分析,三个星系团都能在图 1 中绘出。仅选其中星系团 MSO461.6-0305 理论分析,(其余同等情况)这个星系团 Z = 0.54,(角径分析不在此)该星系团成员情况,正是文献[5] 所述,星系团成员视星等分布在很大的范围,而且红移分布在大范围。文献[6] Table 13 和 Table 21,选 取 r'_{total} 视星等(文献[5] (p. 46)中 r'_{total} 波段(SDSS) 625 nm)讨论,由各天文台公布的可见光视星等与辐射流量 F_{λ} (单位是 3.63 μ Jy)关系方程为

$$m = 22.5 - 2.5 \log F_{\lambda} \tag{4}$$

据文献[6]表 13 和表 21 的红移值及 r'_{total} 视星等列表 3, 1、2、3 列是原表值,第4 列是方程(3)计算的 光度距离, 5 列是方程(2) (4)的可见光度方程

$$\log\left(L_{F_{r'}}/L_{sun}\right) = 10.61218 + 0.4\left(22.5 - r'_{total}\right) + \log\left(\cosh Z - 1\right)$$
(5)

计算值。

把星系团 Z = 0.54 代入方程(3)计算值 3.5252,在纵坐标上定出该值,过这点作横轴平行线,星系团 成员点源分列在平行线上下,共有 70 个点源,16 个点源偏离平行线较远点源都在星系团 Z = 0.54±0.05 划界外,54 个点源在 Z = 0.54±0.05 划界内,即在光度距离区间(3.4821,3.5647),划界红移用方程(1)计算 视纵向间距 6132.1($e^{-0.49} - e^{-0.59}$) ≈ 357 Mpc。红移值看出,16 个点源在星系团 MSO461.6-0305 同一视线 上(因为宇宙引力效应,光线沿类螺线传播,不在同一经典半径附近),不在星系团内,只有 54 个星系在 该星系团内。星系团的 dzL 图只是局域的斜率为 0.5 的平行线簇,表 3 中 4 5 列构成(log($L_{r'}/L_{sun}$), log d_L) 点坐标,例 ID3635 点坐标(9.578,3.6828)与 ID3697 点坐标(9.823,3.5472),前者远暗,后者近亮;在平 面坐标系中,前者点坐标离横轴高靠左,后者点坐标离横轴低靠右。反之 ID3625 点坐标(10.082,3.7609),

Table 3. New luminosity distance and luminosity can be calculated by redshift and r'_{total} ap-

ID	Redshift	r'_{total}	$\log d_L$	$\log(L_{\scriptscriptstyle F_{r'}}/L_{\scriptscriptstyle sun})$
12	0.5508	21.14	3.5340	10.348
153	0.5475	20.89	3.5299	10.443
220	0.829	21.97	3.7162	10.382
234	0.3554	21.10	3.3405	10.097
258	0.5408	22.13	3.5259	9.380
299	0.5407	20.00	3.5258	10.132
309	0.5417	22.48	3.5266	9.221
323	0.5891	21.31	3.5640	9.804
386	0.8849	23.99	3.7485	9.637
486	1.1792	23.63	3.8840	10.652
554	0.5364	22.20	3.5222	9.901
600	0.5375	21.62	3.5228	10.134
606	0.5423	23.29	3.5408	10.108
684	0.5423	23.38	3.5271	10.078
716	0.5474	23.50	3.5313	10.055
722	0.5473	23.81	3.5312	9.726
833	0.9496	24.43	3.7813	9.527
836	0.3676	21.25	3.3554	9.947
897	0.5457	21.76	3.5299	10.092
901	1.0656	21.99	3.8355	10.611
921	0.5494	20.82	3.5329	10.473
971	0.5437	20.55	3.5282	10.573
1002	0.5477	21.58	3.5315	10.167
1082	0.5501	21.13	3.5334	10.351
1156	0.5397	21.18	3.5250	10.314
1204	0.5342	21.37	3.5204	10.229
1331	0.5362	21.37	3.5221	10.232
1491	0.5369	21.83	3.5226	10.049
1479	0.5318	20.86	3.5184	10.429
1500	0.5391	20.75	3.5245	10.485
1507	0.5392	21.61	3.5245	10.141
1584	0.9546	23.81	3.7837	9.780
1594	0.5373	21.14	3.5230	10.326
1638	0.5473	21.43	3.5312	10.226
1720	0.5389	20.00	3.5243	10.789
1723	0.5372	20.13	3.5229	10.730

parent magnitude of members of galaxy groups and clusters (MSO461.6-0305) 表 3. 星系团 MSO461.6-0305 的成员星系的红移值及 *r*_{iotal} 视星等计算出的新光度距离和 光度

Continued				
1753	0.5305	20.63	3.5173	10.579
1823	0.5306	21.33	3.5174	10.239
1904	0.5391	21.59	3.5245	10.149
1931	0.5550	21.41	3.5374	10.247
1952	0.5494	21.15	3.5329	10.342
2031	0.5314	21.56	3.5181	10.148
2032	0.5114	21.24	3.5010	10.242
2127	0.5241	20.34	3.5119	10.624
2166	0.5319	20.54	3.5185	10.557
2223	0.5450	21.96	3.5293	10.011
2230	0.9199	23.07	3.7665	10.041
2240	0.5469	23.02	3.5301	9.590
2491	0.9192	22.92	3.7661	10.100
2561	1.0493	23.09	3.8282	10.156
2563	0.5315	20.73	3.5181	10.400
2645	0.5300	20.10	3.5761	10.730
2657	0.5787	20.61	3.5560	10.604
2689	0.5308	21.60	3.5176	10.131
2788	0.5405	21.72	3.5256	10.099
2931	0.5420	21.04	3.5260	10.374
2945	0.5255	21.80	3.5131	10.042
3005	0.9193	23.16	3.7662	10.004
3124	0.5469	21.50	3.5301	10.198
3260	0.5336	22.52	3.5199	9.768
3521	0.4912	20.92	3.4832	10.334
3610	0.5663	21.61	3.5464	10.185
3625	0.9489	23.04	3.7609	10.082
3635	0.7668	23.81	3.6828	9.578
3697	0.5674	22.42	3.5472	9.823
3724	0.5417	21.98	3.5266	9.992
3749	0.5422	21.91	3.5270	10.026
3792	0.8996	23.26	3.7561	9.944
3857	0.5348	22.04	3.5209	9.964
3906	1.2846	23.62	3.9258	10.140

ID3625 为远亮比 ID3635 为近暗; ID3625 点坐标离横轴高靠右, ID3635 点坐标离横轴低靠左。这 3 个点 坐标在 dzL 图精确表出,是 dzL 图中普遍情况,是必知基础。

文献[6]的 Table 14 和 Table 23 是 RXJ1226 + 3332 星系团的表,星系团红移划界是 Z (0.67~1) (据表中实际红移估计),表中有 120 个星系,其中 29 个在划界外,91 个在划界内,划界红移用方程(1)计算视 纵向间距约 882 Mpc。其情况和前述星系团相同。文献[6]的讨论中指出可能有些红移不在星系团内,以

上划界红移是可行的。很好解决 Binney & Merrifield 在文献[5] (p. 423)中星系团内成员星系红移大小(或远近)与光度大小(或亮暗)在理论图中精确分布。

这两个星系团是文献[6]的图 1、图 2 像大约覆盖 5.5 弧分×5.5 弧分,由新引力宇宙度规推出视角径 是

$$D = \frac{r_s \theta e^{-Z/2} \left(1 - e^{-Z}\right)}{206264.8}$$
 (6)

上面方程中 D 实际垂直视径长, r_s 是宇宙视界, θ 观测角径,单位角秒。可计算出 MSO461.6-0305 大约范围约 3.12 Mpc × 3.12 Mpc,视纵向间距约 357 Mpc; RXJ1226 + 3332 大约范围约 3.70 Mpc × 3.70 Mpc,视纵向间距约 882 Mpc。显然垂直视平面积很小,视纵向间距很长,视直径和视纵向间距比分别约 9‰、4‰;若视纵向间距约为 6~9 Mpc 时,用方程(1)估算 ΔZ 值约是 0.001~0.004,不符合文献[6]表的实 测红移值,所以这 2 个星系集群非团,应是局域的星系长城部分较恰当,其中许多矮星系及 Irr 星系看不 到。超出划界外的星系红移较模糊,这样分析符合当前常规。一般红移 Z < 0.001 测的星系集群多是群或 团,若 Z > 0.01 测的星系集群由团逐渐转为视向星系长城集群。

标准宇宙学的红移光度距离图在某些文献中(不举具体图),只能绘出有限局域无规律的图。以上所述 虽然没有给出图,叙述清楚,需读者简单绘图以便加深理解。

5. 讨论与小结

① 上面较详介绍红外距离光度 dzL 图结构,简介光度(L-L)图,这 2 个图都是新引力宇宙度规理论 分析结果之一,每一个电磁波段观测值,通量 S_{1} 或辐射流量 F_{2} ,红移 Z 都是被宇宙基本均匀的稀薄物 质的极弱引力效应控制,所以对前述图用理论分析其结构,没有给出图,可以了解点坐标的精确分布规 律,没有暗能量参与分析。②表1,表2的制表者和文献[2][3]作者没有上述的前沿性重要内容。文献[2] 的红外光度(L-L)Falk 图点坐标是无规律松散分布,原因是所用的光度距离不准确。其余的图都是唯象图。 dzL_{Falk}图他们无法绘出。最新文献[2] [4] [7]红外作者为什么不绘出全部观测的红移?此处 dzL 图、ZL 图 和(L-L)图表出全部观测的红移,正是优于文献[2] [4] [7]情况。③ 红移定值通量非定值,反之通量定值 红移非定值;红移值小大(近远),对应通量值大小,计算出的光度对应大小(亮暗)变化,可以由理论分析 清楚,这3个最基础光度图分布问题和理论分析,影响整体分布规律,关键通量密度定值,红移Z非定 值时标准宇宙学无法处理恰当,是当代文献重大缺点之一。④ 此处方程绘(Z, $\log d_1$)图,或($\log Z$, $\log d_1$) 图,是全红移光滑曲线;而 ZL 图, dzL 图, (L-L)图也是全红移曲线簇。前者只有 1 个红移变量;后 ZL 图, dzL 图有 2 个变量红移和通量(或辐射流量); (L-L)图变量有 1 个红移和 2 个通量(或辐射流量)。 是纯广义相对论在星系红移光度普适理论最佳应用分析! 附录1给出文献[4]的4个截图,供上面讨论结 果比较。⑤经对高红移星系团成员星系(文献[6]中的2个表)计算分析知,高红移星系团是星系长城局域, 可称为星系纤维局域柱吗?!是真实存在的宇宙普遍现象,文献中还未发现的新现象。很多壮观的引力 光弧正是星系长城局域作用产生的!以上内容本专业普通大三以上,学习认真者都能读懂,通俗易懂!

参考文献 (References)

- [1] 何香涛. 观测宇宙学. 第二版. 北京: 北京师范大学出版社, 2007: 69.
- [2] Rowan-Robinson M, Babbedge T, Oliver S, et al. MNRAS, 2008, 386: 697-714. http://dx.doi.org/10.1111/j.1365-2966.2008.13109.x
- [3] Rowan-Robinson M, Gonzalez-Solares E, Vaccari M, Marchetti L. MNRAS, 2013, 428: 1959. <u>http://lanl.arxiv.org/abs/1210.3471v1</u>

黄洵

- [4] Marchetti L, Vaccari M, Franceschini A, et al. MNRAS, 2015, 456: 1999-2023. <u>http://lanl.arxiv.org/abs/1511.06167v1</u> <u>http://dx.doi.org/10.1093/mnras/stv2717</u>
- [5] Binney J, Merrifield M, 著. 星系天文学. 赵刚, 陈玉琴, 等, 译. 北京: 中国科学技术出版社, 2004: 46, 423.
- [6] Inger J, Chiboucas K. AJ, 2013, 145: Article ID: 77. http://lanl.arxiv.org/abs/1301.3177v1
- [7] Symeonidis M, Vaccari M, Berta S, Page M J, et al. MNRAS, 2013, 431: 2317-2340. http://lanl.arxiv.org/abs/1302.4895v1

Figure 1. Only diagram of *Z* < 1 can be drawn according to the two diagrams and infrared luminosity diagram of all redshifts can't be drawn, which is one of the most serious problems in standard cosmology 图 1. 左图是通量密度 $S_{250\mu m}$ 红外光度一红移图,右图是一般红外光度一红移图,2个图只能绘出 *Z* < 1 的图,不能绘出全红移的红外光度图,是标准宇宙学重大缺点之一

Figure 2. Only diagram of *Z* < 0.5 can be drawn according to the two diagrams and Diagram (L–L) of all redshifts can't be drawn. Point coordinates should gather closely on both sides of the diagonal. Especially in the left diagram, point coordinates gather far away from the diagonal, which is one of the most serious problems in standard cosmology as well **图 2.** 左图是 $L_{IR} - L_{250 \mu m}$ 图, 右图是 $L_{IR} - L_{100 \mu m}$ 图, 2 个图只能绘出 *Z* < 0.5 的图, 不能绘出全红移的(L–L)图, 点坐 标必须紧凑集中对角线两旁,特别左图偏离对角线大远,也是标准宇宙学不能绘出全红移重大缺点之一

附录 2

射电星系的红移与通量密度 S_{λ} 。(1)红移定值时, $S_{3.6\,\mu m}$ (mJy) 非定值查表(1),如下(注:括号内是表下载时自动排列序号,省去名或坐标,方便查对,用名或坐标大冗长):

Z = 0.312时, $S_{3.6}$ 分别是 67.71(133), 5.92(399), 44.52(555), 48.41(771), 7.43(1969), 2948.65(12724)。 Z = 0.318时, $S_{3.6}$ 分别是 16.41(190), 6.05(303), 4.98(659), 10.61(1066), 14.40(4610), 7.46(4775)。 Z = 0.514时, $S_{3.6}$ 分别是 16.99(94), 12.22(96), 4.63(257), 20.02(381), 57.29(799), 105.75(3509)。 Z = 0.542时, $S_{3.6}$ 分别是 10.29(395), 14.08(406), 105.80(556), 8.77(567), 5.08(572), 121.51(1446)。 Z = 0.549时, $S_{3.6}$ 分别是 83.42(139), 26.31(270), 98.16(535), 52.63(683), 67.63(1028), 161.78(3406)。 Z = 1.312时, $S_{3.6}$ 分别是 65.84(1315), 35.79(2776), 14.95(2875), 17.35(4204), 63.97(4243), 7.34(30579)。 Z = 0.570时, $S_{3.6}$ 分别是 39.13(4), 11.34(29), 34.15(67), 25.00(154), 23.42(205), 66.47(323),

 $118.04(532), \ 8.10(646), \ 17.62(688), \ 16.75(728), \ 24.07(880), \ 8.22(929), \ 35.89(939), \ 14.73(1123).$

Z = 0.535时, $S_{3.6}$ 分别是 20.19(8), 45.11(69), 48.79(358), 30.37(376), 105.80(556), 62.98(566), 16.84(652), 32.16(672), 14.19(816), 50.90(843), 27.37(857), 22.34(921), 98.64(969), 11.36(1015), 102.59(1259)。

Z = 1.270时, $S_{3.6}$ 分别是 6.90(144), 16.86(949), 17.45(461), 18.70(1264), 10.59(1354), 48.11(1798), 29.00(1899), 8.46(2759), 87.64(3092), 49.62(4372), 68.74(6498), 20.49(9304), 28.18(10221), 89.10(23542).

Z = 2.090时, $S_{3.6}$ 分别是 6.24(1501), 9.91(1507), 13.84(1566), 17.05(6017), 9.76(8843), 46.67(14448), 13.40(21765), 5.49(27857)。

Z = 2.532 时, S_{3.6}分别是 20.19(9), 7.41(16942), 6.99(23564), 10.66(25256)。

(2) 通量密度 S_{3.6µm} 定值时, 红移 Z 非定值查表(1), 如下

 $S_{3.6} = 9.03$ 时, Z 分别是 0.629(133), 2.802(10811), 0.380(13586), 3.074(14597), 0.300(15905)。

 $S_{3,6} = 9.75$ 时, Z 分别是 1.344(893), 0.941(1764), 0.897(7235), 1.291(11778), 0.690(15638), 0.570(21808), 0.445(29629), 1.099(29694)。

 $S_{3.6} = 32.25$ 时, Z 分别是 0.521(1653), 0.387(6010), 0.854(18152)。

S₃₆=32.27时,Z分别是0.107(905),0.486(2325),0.675(6093),0.290(8564)。

*S*₃₆=32.95时,*Z*分别是 0.432(195), 1.138(20150), 0.828(23040)。

 $S_{3.6} = 9.74$ 时, 红移 z 分别是 0.493(1), 0.197(2291), 0.607(3371), 0.667(7471), 0.535(12483), 1.118(18701), 0.230(19172)。

*S*_{3.6} = 9.04 时, 红移 *z* 分别是 0.102(2573), 0.932(3960), 0.432(15732), 0.950(16576), 0.413(17735), 0.466(28045)。

 $S_{3.6} = 9.05$ 时, 红移 z 分别是 0.614(1157), 0.607(8833), 0.459(11448), 0.197(12890), 0.169(13670), 0.528(13506), 0.828(20414), 0.803(24508), 0.549(25502)。

 $S_{3,6} = 9.70$ 时, 红移 Z 分别是 0.897(66), 0.493(6202), 0.600(12443), 0.521(18201), 0.186(24295), 1.388(28346)。

*S*_{3.6} = 24.49 时,红移 Z 分别是 4.152(10821),0.879(10831)。

*S*_{3.6} = 26.60 时,红移 Z 分别是 1.0519(14), 1.745(20840)。

 $S_{3.6} = 26.47$ 时, 红移 Z 分别是 1.333(57), 0.871(11487)。

 $S_{3.6} = 44.67$ 时, 红移 Z 分别是 1.270(19363), 0.968(19412)。

*S*_{3.6} = 44.85 时,红移 Z 分别是 0.349(2), 0.253(12711)。

*S*_{3.6} = 44.95 时,红移 Z 分别是 0.439(45), 0.406(9248)。

*S*_{3.6} = 47.83时,红移Z分别是0.318(14),0.754(777),1.466(19335)。

表(1),表(2)中大量存在上述情况,仅是极小部分情况,概率可高达 60%以上,各种星系、类星体表的红移、通量密度和视星等的有效数字各不相同,则上述情况的概率随有效数字增加而减小,但不会无。 而且表(1),表(2)可以绘出全红移的 Figure 1 和 Figure 2 (附录 1)。这 2 个表中上述 2 种规律隐含着没有开发的物理性质。是纯广义相对论导出的新引力宇宙度规在理论分析中才能发现这种规律。

Hans汉斯

期刊投稿者将享受如下服务:

- 1. 投稿前咨询服务 (QQ、微信、邮箱皆可)
- 2. 为您匹配最合适的期刊
- 3. 24 小时以内解答您的所有疑问
- 4. 友好的在线投稿界面
- 5. 专业的同行评审
- 6. 知网检索
- 7. 全网络覆盖式推广您的研究

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>aas@hanspub.org</u>