Phase Relationship of BaO-In₂O₃-P₂O₅ System

Gengxin Zhang, Jing Zhang*

School of Materials Science and Engineering, Central South University, Changsha Hunan Email: ^{*}beihaishamo@vip.qq.com

Received: Jun. 7th, 2019; accepted: Jun. 29th, 2019; published: Jul. 5th, 2019

Abstract

The phase relationship of BaO-In₂O₃-P₂O₅ system was determined by powder diffraction method. Three new phosphate compounds $\tau 1$, $\tau 2$ and $\tau 3$ were found and their pure phases were successfully prepared. The formula of $\tau 1$ is Ba₃In₄(PO₄)₆. A total of fourteen three-phase zones of the system below the liquid phase were determined.

Keywords

Inorganic Compounds, Phase Equilibria, Phosphate

BaO-In₂O₃-P₂O₅体系相关系

张更鑫,张静*

中南大学,材料科学与工程学院,湖南 长沙 Email:^{*}beihaishamo@vip.qq.com

收稿日期: 2019年6月7日; 录用日期: 2019年6月29日; 发布日期: 2019年7月5日

摘要

实验主要通过粉末衍射方法测定了BaO-In₂O₃-P₂O₅体系相关系,发现了三个新的磷酸盐化合物 τ 1、 τ 2 和 τ 3,并成功制备出它们的纯相,其中 τ 1的分子式为Ba₃In₄(PO₄)₆。总共测定了体系在液相面下的十四个三相区。

关键词

无机化合物,相平衡,磷酸盐

*通讯作者。

Copyright © 2019 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u> Open Access

1. 引言

磷酸盐具有:物理化学性质稳定、烧结温度低、合成简便和生产成本低等优点。因此,磷酸盐化合物一直是荧光粉基质材料、光催化材料的研究热点[1][2]。In3⁺离子在晶体结构中的配位体具有多样性(InO₄、InO₅和InO₆等),从而当稀土离子掺杂进入基质晶格中In位时,可以为稀土离子提供多样的晶体场环境,为研究荧光粉基质材料和光催化材料提供了丰富的选择。课题组在研究碱土金属磷酸盐MgO-In₂O₃-P₂O₅体系过程中,发现了两个适合作为荧光粉基质的新化合物(MgIn₂(PO₄)₄[3]、Mg₃In₄(PO₄)₆[4])。研究表明 MgIn₂P₄O₁₄:Tm³⁺,Dy³⁺荧光粉具有优异的热稳定性能和光色可调性能(蓝 - 白 - 黄)。而相近的 BaO-In₂O₃-P₂O₅体系尚未有系统的研究报道。因此,实验以寻找新型荧光粉基质和光催化材料为目标,研究了 BaO-In₂O₃-P₂O₅体系相关系。

2. 样品合成与表征

2.1. 原料与仪器

实验所用原料如表1所示,仪器设备见表2。

Table 1. Raw materials used in the experiment

表 1. 实验所用原料

原料名称	化学式	纯度	厂商
碳酸钡	BaCO ₃	≥99.95%	Alfa Aesar
氧化铟	In_2O_3	≥99.99%	Aladdin
磷酸二氢铵	NH ₄ H ₂ PO ₄	≥99.995%	Alfa Aesar

Table 2. Equipment used in the experiment 表 2. 实验所用仪器设备

仪器名称	精度	厂商
分析天平	± 0.0001	托利多(上海)有限公司
箱式电阻炉 KLS-1100X	±5°C	合肥科晶材料技术有限公司
箱式电阻炉 KLS-1400X	±5°C	合肥科晶材料技术有限公司
箱式电阻炉 KLS-1700X	±5°C	合肥科晶材料技术有限公司

2.2. 样品的制备流程

实验首先按一定的化学计量比称取碳酸钡、氧化铟和磷酸二氢铵,置于玛瑙研钵中研磨,使其混合 均匀。然后将混匀的原料装入刚玉坩埚,加上盖子后放入马弗炉中进行预烧,温度为 600℃,保温时间 为 12 h,得到反应前驱体,并除去水分、杂质等。最后将预烧后的样品倒入研钵中,研磨均匀后再装回 刚玉坩埚,放入马弗炉中进行终烧,7、8 和 12 号样品终烧温度为 1000℃,其余样品终烧温度为 1150℃, 保温时间为 24 h。取出样品后再次研磨均匀以备检测。

2.3. 样品的表征

实验使用的是 Rigaku diffractometer D/MAX-2500 收集用于物相鉴定的 X 射线粉末衍射图谱, 辐射源 为 Cu K_a, 电压和电流分别为 40 kV 和 250 mA, 扫描速度为 8°/min, 扫描范围是 5°~80°, 扫描模式为室 温下的连续扫描。

3. 实验结果与讨论

3.1. 体系已知化合物

为了给实验选取配样点的成分提供参考,本实验对 BaO-In₂O₃-P₂O₅体系已知的化合物进行了汇总。 通过检索相图、晶体学数据库,并查阅文献,实验发现在该体系中,BaO-In₂O₃[5]二元系有五个化合物: Ba₅In₂O₈、Ba₃In₂O₆、Ba₂In₂O₅、Ba₂In₃O_{6.5}和 BaIn₂O₄; In₂O₃-P₂O₅二元系有三个化合物: InPO₄[6]、In₄(P₂O₇)₃ [7]和 In(PO₃)₃[8]: BaO-P₂O₅二元系有三个化合物: Ba₄P₂O₉[9]、Ba₃P₂O₈[10]和 Ba₂P₂O₇[11]。已报道的 三元化合物有五个,分别为: BaIn₂P₄O₁₄[12]、Ba₃In₂P₄O₁₆[12]、Ba₃In(PO₄)₃[13]、Ba₂In_{1.7}P_{0.3}O_{5.4}[14]和 Ba₂In_{1.9}P_{0.1}O_{5.1}[15]。

3.2. 三元体系相关系

本实验参考已知化合物组成的可能的相关系选择初始实验点的成分,采用高温固相法制备粉末样品。 根据文献报道的三元化合物 BaIn₂P₄O₁₄ (1000℃)、Ba₃In₂P₄O₁₆ (1080℃) [12]和 Ba₃In(PO₄)₃ (950℃~1150℃) [13]的合成温度,实验选择在两个温度(1000℃和 1150℃)下对相应化合物附近的粉末样品进行终烧,并收 集样品的 X 射线粉末衍射数据进行物相分析。

实验中,在分析 1 和 2 号样品的 X 射线衍射图谱时,去除相应样品中 In₂O₃、BaInO_{2.5}和 Ba₃(PO₄)₂的衍射峰后的衍射峰与化合物 Ba₁₀P₆O₂₅不匹配,通过添加 H 元素后发现衍射峰与化合物 Ba₅(PO₄)₃OH 匹配。查阅化合物 Ba₅(PO₄)₃OH 的相关文献发现, Duan 等人[16]采用与本实验相同的原料和合成方法合成了 Ba₅(PO₄)₃OH 纯相。因此,分析其可能的原因是 1 和 2 号样品吸收空气中的水后发生了化学反应生成化合物 Ba₅(PO₄)₃OH。

在本实验中,我们发现了三个新化合物: r1、r2 和 r3,并成功合成了它们的纯相。如图 1(a)所示, 在测定相关系过程中,5和6号样品中出现了相同的 XRD 未知峰,根据相关系和相律,判断它们拥有共 同的未知相(r1),通过对比相近的体系,发现在这些实验点附近 MgO-In₂O₃-P₂O₅ 体系中存在化合物 Mg₃In₄(PO₄)₆ [4],因此推测 5和6号样品中共同的未知相是 Ba₃In₄(PO₄)₆。经过在该比例化合物附近配样 并对比 XRD 图谱,实验发现 15 号样品的 X 射线衍射峰在试配纯相样品中衍射峰最少,并且与 5 和 6 号 样品中的未知峰相同,从而实验得到 r1 (Ba₃In₄(PO₄)₆)的纯相。同理,如图 1(b)和图 1(c)所示,在 12 和 13 号样品、10 和 11 号样品也分别出现共同的未知相(r2 和 r3)。通过在未知相附近选点配样,并对比 X 射线粉末衍射图谱,实验最终获得了新化合物 r2 和 r3 的纯相,其化学式还有待进一步确定。

实验最终通过 14 个样品的 X 射线粉末衍射数据确定了 BaO-In₂O₃-P₂O₅ 体系的 14 个三相区: In₂O₃ + Ba₅(PO₄)₃OH + BaInO_{2.5}, In₂O₃ + Ba₅(PO₄)₃OH + Ba₃(PO₄)₂, In₂O₃ + Ba₃In(PO₄)₃ + Ba₃(PO₄)₂, In₂O₃ + Ba₃In(PO₄)₃ + Ba₃In₂(PO₄)₄, In₂O₃ + Ba₃In₂(PO₄)₄, In₂O₃ + Ba₃In₂(PO₄)₄, In₂O₃ + Ba₃In₄(PO₄)₆, InPO₄ + In₄(P₂O₇)₃ + BaIn₂(PO₄)₄, In(PO₃)₃ + In₄ (P₂O₇)₃ + BaIn₂(PO₄)₄, Ba₃In(PO₄)₃ + Ba₂P₂O₇ + τ₃, Ba₃(PO₄)₂ + τ₃, InPO₄ + BaIn₂(PO₄)₄ + τ₂ 和 InPO₄ + Ba₃In₄(PO₄)₆ + τ₂, Ba₃In(PO₄)₃ + Ba₂P₂O₇ + Ba₃In₂(PO₄)₄, 测定相关系过程中相应样品的名义成分、合成温度和平衡相组成见 表 3。已测定的液相面下的固相相关系见图 2。

Figure 1. (a) X-ray powder diffraction pattern comparison of samples No. 5, 6, and 15, (b) X-ray powder diffraction pattern comparison of samples No. 12, 13, and 16, and (c) X-ray powder diffraction pattern comparison of samples No. 11, 10, and 17 图 1. (a) 5、6和15号样品 X 射线粉末衍射图谱对比图, (b) 12、13和16号样品 X 射线粉 末衍射图谱对比图, (c) 11、10和17号样品 X 射线粉末衍射图谱对比图

Figure 2. Phase equilibrium diagram of BaO-In₂O₃-P₂O₅ ternary system below the liquid phase. The circle is the reported compound; the triangle is the nominal composition of sample; the five-pointed star is the new compound found in this experiment; the gray area is the undetermined region **图 2.** BaO-In₂O₃-P₂O₅ 三元系液相面下相平衡关系图。圆点为已报道化合物, 三角形为三相区样品名义成分点, 五角星为本实验新发现新化合物, 灰色 区域为尚未测定部分

Table 3. Nominal composition, synthesis temperature and equilibrium phase composition of each sample in $BaO-In_2O_3-P_2O_5$ system

样品 —		成分/(mol%)		\mathbf{T}	和大文
	BaO	InO _{1.5}	PO _{2.5}	= I/(C)	相大东
1	55.50	13.80	30.70	1150	$In_2O_3 + Ba_5(PO_4)_3OH + BaInO_{2.5}$
2	50.70	16.80	32.50	1150	$In_{2}O_{3} + Ba_{5}(PO_{4})_{3}OH + Ba_{3}(PO_{4})_{2}$
3	30.00	43.20	26.80	1150	$In_2O_3 + Ba_3In(PO_4)_3 + Ba_3(PO_4)_2$
4	29.60	35.60	34.80	1150	$In_2O_3+Ba_3In(PO_4)_3+Ba_3In_2(PO_4)_4$
5	21.70	43.70	34.60	1150	$In_2O_3 + Ba_3In_4(PO_4)_6 + Ba_3In_2(PO_4)_4$
6	12.70	50.40	36.90	1150	$In_2O_3 + In (PO_4) + Ba_3In_4(PO_4)_6$
7	4.56	39.02	56.42	1000	$InPO_{4} + In_{4} \ (P_{2}O_{7})_{3} + BaIn_{2}(PO_{4})_{4}$
8	4.72	31.53	63.75	1000	$In(PO_3)_3 + In_4 \ (P_2O_7)_3 + BaIn_2(PO_4)_4$
9	49.20	6.60	44.20	1150	$Ba_3In(PO_4)_3+Ba_2P_2O_7+\tau_3$
10	52.20	2.60	45.20	1150	$Ba_{3}(PO_{4})_{2}+Ba_{2}P_{2}O_{7}+\tau_{3}$
11	52.40	5.80	41.80	1150	$Ba_3In(PO_4)_3+Ba_3(PO_4)_2+\tau_3$
12	10.74	36.15	53.11	1000	$InPO_4 + BaIn_2(PO_4)_4 + \tau_2$
13	13.00	37.40	49.60	1150	$InPO_4+Ba_3In_4(PO_4)_6+\tau_2$
14	42.40	11.60	46.00	1150	$Ba_{3}In(PO_{4})_{3}+Ba_{2}P_{2}O_{7}+Ba_{3}In_{2}(PO_{4})_{4}$
15	23.10	30.80	46.20	1150	$ au_1$
16	15.80	33.30	50.90	1150	$ au_2$
17	52.40	5.00	42.60	1150	$ au_3$

表 3. BaO-In2O3-P2O5 体系中各样品的名义成分、合成温度和平衡相组成

4. 结论

本实验通过高温固相法制备粉末样品,结合 X 射线粉末衍射技术,对 BaO-In₂O₃-P₂O₅体系贫磷贫钡 区域的相关系进行研究,测得了液相面下的 14 个三相区。该体系中还发现了三个未被报道的新型三元化 合物: *τ*1、*τ*2 和 *τ*3,并成功制备出了它们的纯相。

致谢

感谢国家自然科学基金(No.5177021122)的支持。

参考文献

- Lin, C.C., Xiao, Z.R., Guo, G.-Y., Chan, T.-S. and Liu, R.-S. (2010) Versatile Phosphate Phosphors ABPO₄ in White Light-Emitting Diodes: Collocated Characteristic Analysis and Theoretical Calculations. *Journal of the American Chemical Society*, **132**, 3020-3028. <u>https://doi.org/10.1021/ja9092456</u>
- [2] Liu, S., et al. (2018) Preparation and Investigation of Dy³⁺-Doped Ca₉LiGd_{2/3}(PO₄)₇ Single-Phase Full-Color Phosphor. Materials Research Bulletin, 108, 275-280.
- [3] Zhang, J., Cai, G.-M., Yang, L.-W., Ma, Z.-Y. and Jin, Z.-P. (2017) Layered Crystal Structure, Color-Tunable Photoluminescence, and Excellent Thermal Stability of MgIn₂P₄O₁₄ Phosphate-Based Phosphors. *Inorganic Chemistry*, 56, 12902-12913. <u>https://doi.org/10.1021/acs.inorgchem.7b01670</u>
- [4] Zhang, J., Cai, G., Zhang, G. and Jin, Z. (2018) Insight into Crystal Structure and Eu/Tb Doped Luminescence Property of a New Phosphate. *Journal of Alloys and Compounds*, 762, 444-455. <u>https://doi.org/10.1016/j.jallcom.2018.05.079</u>

- [5] Kalinina, T.A., Kovba, L.M., et al. (1983) Phase Diagrams of BaO-In₂O₃ System. Journal of Inorganic Chemistry, 28, 466-470.
- [6] Mooney, R.W. and Welch, A.J.E. (1954) The Crystal Structure of Rh₂B. Acta Crystallographica, 7, 49-53. <u>https://doi.org/10.1107/S0365110X54000072</u>
- [7] Thauern, H. and Glaum, R. (2003) Beiträge zur Kristallchemie und zum thermischen Verhalten von wasserfreien Phosphaten. XXXIII [1] In₂P₂O₇, ein Indium (I)-Diphosphato-Indat (III) und In₄(P₂O₇)₃—Darstellung, Kristallisation und Kristallstrukturen. Zeitschrift für anorganische und allgemeine Chemie, **629**, 479-486. https://doi.org/10.1002/zaac.200390079
- [8] Ivashkevich, L.S., Lyakhov, A.S. and Selevich, A.F. (2010) The Restrained Rietveld Refinement of Modulated Trivalent Metal Polyphosphates M(PO₃)₃. *Zeitschrift für Kristallographie International Journal for Structural, Physical, and Chemical Aspects of Crystalline Materials*, 225, 302-308. https://doi.org/10.1524/zkri.2010.1240
- [9] Bauer, H. and Balz, W. (1965) Über Erdalkaliphosphate, -Arsenate und -Vanadate Vom Typus 4MeO·X₂O₅. Zeitschrift für anorganische und allgemeine Chemie, 340, 225-231. <u>https://doi.org/10.1002/zaac.19653400502</u>
- [10] Popović, L., Manoun, B. and De Waal, D. (2002) Crystal Chemistry, Vibrational Spectra and Factor Group Analysis of Ba_(3-x)Sr_x(PO₄)₂ (0≤ x≤ 3) Solid Solution Series. *Journal of Alloys and Compounds*, **343**, 82-89. <u>https://doi.org/10.1016/S0925-8388(02)00138-X</u>
- [11] ElBelghitti, A.A., Elmarzouki, A., Boukhari, A. and Holt, E.M. (1995) σ-Dibarium Pyrophosphate. Acta Crystallographica Section C: Crystal Structure Communications, 51, 1478-1480. <u>https://doi.org/10.1107/S0108270195001739</u>
- [12] Zhang, W.L., Chai, G.L., Zhang, H., Lin, C.S., He, C.Z. and Cheng, W.D. (2010) Two New Barium Indium Phosphates with Intersecting Tunnel Structures: BaIn₂P₄O₁₄, and Ba₃In₂P₄O₁₆. *Materials Research Bulletin*, **45**, 1796-1802. <u>https://doi.org/10.1016/j.materresbull.2010.09.020</u>
- [13] Blasse, G. (1970) New Compounds with Eulytine Structure: Crystal Chemistry and Luminescence. Journal of Solid State Chemistry, 2, 27-30. <u>https://doi.org/10.1016/0022-4596(70)90028-9</u>
- [14] Mancini, A., Shin, J.F., Orera, A., Slater, P.R., Tealdi, C., Ren, Y. and Malavasi, L. (2012) Insight into the Local Structure of Barium Indate Oxide-Ion Conductors: An X-Ray Total Scattering Study. *Dalton Transactions*, 41, 50-53. <u>https://doi.org/10.1039/C1DT11660F</u>
- [15] Shin, J.F., Orera, A., Apperley, D.C. and Slater, P.R. (2011) Oxyanion Doping Strategies to Enhance the Ionic Conductivity in Ba₂In₂O₅. *Journal of Materials Chemistry*, **21**, 874-879. <u>https://doi.org/10.1039/C0JM01978J</u>
- [16] Duan, C.J., Wu, X.Y., Liu, W., Chen, H.H., Yang, X.X. and Zhao, J.T. (2005) X-Ray Excited Luminescent Properties of Apatitic Compounds Ba₅(PO₄)₃X (X: OH⁻, Cl⁻, Br⁻); Structure and Hydroxyl Ion Conductivity of Barium Hydroxylapatite. *Journal of Alloys and Compounds*, **396**, 86-91. <u>https://doi.org/10.1016/j.jallcom.2004.11.064</u>

知网检索的两种方式:

- 1. 打开知网首页: <u>http://cnki.net/</u>, 点击页面中"外文资源总库 CNKI SCHOLAR", 跳转至: <u>http://scholar.cnki.net/new</u>, 搜索框内直接输入文章标题, 即可查询;
- 或点击"高级检索",下拉列表框选择: [ISSN],输入期刊 ISSN: 2331-012X,即可查询。
- 2. 通过知网首页 <u>http://cnki.net/</u>顶部"旧版入口"进入知网旧版: <u>http://www.cnki.net/old/</u>, 左侧选择"国际文献总库" 进入, 搜索框直接输入文章标题,即可查询。

投稿请点击: <u>http://www.hanspub.org/Submission.aspx</u> 期刊邮箱: <u>amc@hanspub.org</u>