2021年5月10日~12日湖南省邵阳市 暴雨、冰雹天气过程分析

王晶晶,向 钢,张俊利

湖南省邵阳市气象局,湖南 邵阳

收稿日期: 2023年8月18日; 录用日期: 2023年9月15日; 发布日期: 2023年9月25日

摘要

利用自动站小时降水资料、常规观测资料、欧洲中心细网格和GRAPES-GFS数值模式产品、NCEP和ERA5 再分析资料,对2021年5月10日~12日邵阳市暴雨、冰雹天气过程进行分析。结果表明:此次暴雨是在 高空槽东移、低空急流、低空切变线共同作用下发生的。白天地面倒槽的发展、地面辐合线对暖区暴雨、 冰雹、雷暴大风等天气有一定的指示作用。临近的中尺度模式对于暴雨、大暴雨有指示意义。

关键词

冰雹,暴雨,模式检验

Analysis of Rainstorm and Hail Weather Process in Shaoyang City, Hunan Province from 10~12 May, 2021

Jingjing Wang, Gang Xiang, Junli Zhang

Shaoyang Meteorological Bureau, Shaoyang Hunan

Received: Aug. 18th, 2023; accepted: Sep. 15th, 2023; published: Sep. 25th, 2023

Abstract

The rainstorm and hail weather process in Shaoyang from 10~12 May, 2021 is analyzed by using the hourly precipitation data of automatic stations, conventional observations, the European Center fine grid and the GRAPES-GFS numerical model products, NCEP and ERA5 reanalysis data. The results show that the rainstorm occurred under the joint action of the eastward movement of the high trough, the low-level jet stream and the low-level shear line. The devel-

opment of surface troughs during the day and the convergence line of the ground have a certain indicative effect on weather conditions such as heavy rain, hail, thunderstorms, and strong winds in warm regions. The adjacent mesoscale model is indicative of rainstorm and heavy rainstorm.

Keywords

Hail, Rainstorm, Model Validation

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC ① Open Access

1. 引言

暴雨天气引发的山洪泥石流、山体滑坡、城市内涝是影响湖南最主要的自然灾害,往往危及人们的 财产和生命安全,造成严重的经济损失[1]-[6]。近年来许多学者对湖南汛期暴雨天气过程进行了大量研究, 陈红专等[2]通过对 2017 年盛夏湖南一次持续性暴雨过程的水汽特征分析发现,低空急流强度和位置的变 化与暴雨的强度和落区紧密相连,全球尺度的水汽输送和水汽辐合与持续性暴雨密切相关。刘红武等[7] 对湖南一次暖区特大暴雨分析发现,地面辐合线为暴雨提供了触发机制。

2021年5月10日~12日邵阳市迎来了一次较为复杂的暴雨天气,并伴有冰雹和雷暴大风等强对流天气,本次过程共有三个县受灾,绥宁县共3.725万人口受灾,700余处山体滑坡,23条道路中断,2个乡镇电力中断,880.79公顷秧田和经济作物被淹,紧急转移3276人,105间房屋严重受损,1172间房屋一般受损,没有出现人员伤亡,直接经济损失4680万元。洞口县部分乡镇出现大风、冰雹、暴雨极端天气,直接经济损失385.3万元。隆回县损坏房屋62间,倒塌房屋10间,农作物受灾面积433.16公顷,绝收面积105.6公顷,直接经济损失1389.18万元。

2. 资料和方法

该文所用资料为 2021 年 5 月 10 日至 12 日自动站小时降水资料、常规观测资料、欧洲中心细网格和 GRAPES-GFS 数值模式产品、NCEP 的逐 6 小时再分析资料(要素包括: 70 百帕比湿、850 百帕比湿、K 指数) ERA5 逐小时再分析资料(要素包括: 涡度场、散度场),资料空间分辨率为 1°×1°。通过分析找出 暴雨强度变化的原因,对模式预报进行偏差分析,提高模式的订正能力。

3. 成因分析

3.1. 天气实况

2021年5月10日08时至11日08时(图1左),主要降雨集中在10日夜间,邵阳市最大降水量为167.4 毫米出现在绥宁动雷站,最大小时雨强出现在11日01时至02时绥宁谢庄站为68毫米,主要降雨时段 集中在11日01时至05时。11日白天到晚上,降水明显减弱,全市以小到中雨为主,局地大雨。12日 08时至13日08时(图1右),邵阳市暴雨有14站,集中在绥宁12站和城步2站,最大降水量为67.1毫 米出现在绥宁竹舟江,最大小时雨强出现在13日04时至05时绥宁动雷为43.7毫米,从1小时降雨量 看,主要降雨时段集中在12日23时至13日06时。

Figure 1. Accumulated rainfall at automatic stations in Shaoyang City from 08:00 BT 10 May to 08:00 BT 11 May (left), Accumulated rainfall at automatic stations in Shaoyang City from 08:00 BT 12 May to 08:00 BT 13 May (right) 图 1. 邵阳市 5月10日08时至11日08时自动站累计雨量(左)和邵阳市 5月12日08时至13日08时自动站累计雨量(右)

3.2. 环流形势

200 百帕上黄河及以北有宽广的高空急流区稳定维持,10 日湖南高空有明显辐散分流场,在 20~30°N 附近有一 30~50 m/s 的高空急流,为暴雨的发生提供了有利的动力抬升条件,有利于低层切变线的发生 发展;11 日到 12 日高空转为一致西南气流,20~30°N 的急流发展,湖南处于其右侧,且风速场上有一定 的辐散,有利于上升运动的维持。

500 百帕主要表现为两槽一脊型,10 日贝湖以东有-32℃的冷中心通过西北气流引导,使得弱冷空气 南下,我国中高纬度为一致西北气流,青海东部和四川东部至云南有高空槽,华南和华中都处于槽前西 南气流控制,在湘西南和广西北部西南气流达 20 m/s 以上;10 日 20 时在川东有低涡生成,南支槽移动 缓慢,11 日自青藏高原东出的槽经向度减小,移速增快影响长江中下游地区,湖南一直处于较为平直的 西风带中,12 日中高纬环流平直,湖南地区没有明显冷空气配合,四川西北部有一东北-西南向的短波 槽,青藏高原南侧有明显南支槽,南支槽前西南气流旺盛,其上有短波槽沿南支槽前移动。

700 百帕一直有明显西南急流,10 日在云南、贵州、湖南、江西以南地区有宽广的12 m/s 以上西南急流, 11 日 02 时西南急流强度达 20 m/s 以上,10 日 700 百帕西南急流强度和范围都明显强于12 日,其西南急流 随着高空槽东移逐渐向偏东方向移动;12 日在云南、贵州、广西一带有明显12 m/s 以上西南急流,其强度和 范围均比 10 日偏弱,其急流区域明显较 10 日西南急流偏西,在13 日 02 时开始中心出现 20 m/s 以上急流。

850 百帕上,10 日过程属于低层低涡切变线南压造成的暴雨,12 日过程属于转为偏南风过程中暖式 切变线北抬形成的暖区暴雨。

两次过程中海平面气压场具有明显不同,10日过程中地面在贵州西部地区有一低压中心,其前部有 低压倒槽发展,湖南中南部有一明显地面辐合线,此次过程中我国地面气温持续偏高,出现 30℃以上的 高温,绥宁县最高达到了 33℃,大气能量充沛,西北冷空气自西北向东南入侵我市,冷暖气流激烈交汇; 12日地面转为偏南气流,属于偏南气流向北推进过程中暖式切变线配合风速辐合产生的暴雨。

从图 2 中尺度分析图可以看出,10 日降水具有典型西风槽暴雨特点,暴雨区域集中,强度大,暴雨 区位于高空槽前、低空西南急流顶端、冷式切变线右侧和地面辐合线附近,中低层有冷空气扩散到东部 沿海,然后又回流到湖南地区与暖湿气流配合;11 日高空槽东移,低层切变线南压,大雨带移至湘东南;

12 日暴雨较 10 日明显偏少,暴雨区域主要位于山脉迎风坡,中低层没有冷空气配合。

 Figure 2. Mesoscale analysis on May 10th (left), Mesoscale analysis on May 12th (left)

 图 2.5月10日中尺度分析(左)和5月12日中尺度分析(右)

我们选取了 10 日 20 时怀化站与桂林站的 T-logP 图,相较于怀化站,桂林站更靠南,与绥宁县的实际情况更接近,从怀化站 T-logP 图(图 3 左)可以看到湿层深厚,有明显暖平流,易产生短时强降水;桂林站(图 3 右)中层有明显干空气卷入,0~3 km 垂直风切变很大;桂林站的 CAPE 值达到了 2345.6 J/kg,怀化站 CAPE 值为 1719.1 J/kg;虽然桂林站 0℃层高度位置较高,但当对流有效位能充足时,仍能产生大冰雹。

Figure 3. T-logP of Huaihua Station at 20:00 on the 10th (Left), T-logP of Guilin Station at 20:00 on the 10th (right) 图 3. 10 日 20 时怀化站 T-logP 图(左)和 10 日 20 时桂林站 T-logP 图(右)

3.3. 物理量分析

从 10 日 22 时 700 百帕比湿(图 4 左)可以看出, 10 日过程暴雨发生前, 700 百帕怀化到邵阳地区达 9 g/kg 以上, 11 日 00 时 850 百帕比湿(图 4 右)达 15 g/kg 以上、暴雨中心 16 g/kg, 说明 700 百帕比湿 9 g/kg 和 850 百帕比湿 15 g/kg 是满足暴雨的一个指标。

从 11 日 02 时、13 日 02 时 K 指数分布(图 5)看,10 日 08 时湖南中南部地区 K 指数 35℃以上,11 日 02 时湖南中部偏南地区 K 指数在 40℃以上,13 日 02 时湘西南南部和湘南南部 K 指数在 38℃以上, 暴雨更易发生在 K 指数较为极端的区域。

Figure 4. 700 hPa humidity at 22:00 on the 10th (unit: g/kg), 850 hPa humidity at 00:00 on the 11th (unit: g/kg) 图 4. 10 日 22 时 700 百帕比湿(单位: g/kg)和 11 日 00 时 850 百帕比湿(单位: g/kg)

Figure 5. K-index at 02:00 on the 11th (unit: ℃), K-index at 02:00 on the 13th (unit: ℃) 图 5. 11 日 02 时 K 指数(单位: ℃)和 13 日 02 时 K 指数(单位: ℃)

图 6. 绥宁动雷站涡度时间剖面图(单位: 10⁻⁵s⁻¹)

从图 6 暴雨中心涡度时间剖面图看,700 百帕以下出现负值涡度,925 到 850 百帕负值最大达到-20×10⁻⁵ s⁻¹,700 百帕到 600 百帕为正值涡度,从 400 百帕向上维持正值涡度,从 11 日 01 时开始,925 百帕以下的负涡度越来越大,700 百帕到 600 百帕的正值涡度逐渐向 0×10⁻⁵ s⁻¹ 靠近,说明中低层气旋性涡旋在增强,辐合加强,高层涡度正值达 10×10⁻⁵ s⁻¹以上,反气旋性涡旋明显加强,高层有强辐散,低层 辐合配合高层的强辐散,具有明显的抽吸作用,与小时雨强最大时相对应,使暴雨可以维持较长时间。

从图 7 绥宁动雷站散度剖面图可以看出,01 时开始,850 百帕以下与 600 百帕以上整层转为负值散度,负值最大达−3×10⁻⁵ s⁻¹,说明 01 时开始 850 百帕低层明显辐合,有利于低层水汽辐合抬升,上升运动加强,促进暴雨发生。

Figure 7. Divergence time-section of Suining Donglei station (unit: $10^{-5}s^{-1}$) 图 7. 绥宁动雷站散度时间剖面图(单位: $10^{-5}s^{-1}$)

3.4. 模式检验与偏差分析

从 9 日 20 时模式起报的 10 日 08 时至 11 日 08 时降水量与实况对比(图 8)来看, EC 预报的暴雨主要 位于湘西和怀化北部、洞庭湖等湘中以北地区, EC 预报的暴雨较实况南压的慢,所以造成怀化南部和邵 阳西南部暴雨 EC 未报出来、并且对于大暴雨出现了漏报; GRAPES_GFS 模式预报的暴雨落区主要位于

2021年5月9日20时起报 10日8时-11日8时

Figure 8. Precipitation forecast by various models at 20:00 on the 9th from 08:00 on the 10th to 08:00 on the 11th 图 8.9 日 20 时各家模式起报的 10 日 08 时至 11 日 08 时降雨量

2021年5月11日20时起报 12日8时-13日8时

Figure 9. Precipitation forecast by various models at 20:00 on the 11th from 08:00 on the 12th to 08:00 on the 13th 图 9. 11 日 20 时各家模式起报的 12 日 08 时至 13 日 08 时降雨量

Figure 10. 12 h precipitation forecast by various models at 20:00 on the 10th from 20:00 on the 10th to 08:00 on the 11th and from 08:00 on the 11th to 20:00 on the 11th (left), 12 h precipitation forecast by various models at 08:00 on the 12th from 08:00 on the 12th to 20:00 on the 12th, from 20:00 on the 12th to 08:00 on the 13th and from 08:00 on the 13th to 20:00 on the 13th (right) **图 10.** 10 日 20 时多模式起报的 10 日 20 时至 11 日 08 时、11 日 08 时至 11 日 20 时的 12 小时降雨量(左)和 12 日 08 时多模式起报的 12 日 08 时至 12 日 20 时、12 日 20 时至 13 日 08 时、13 日 08 时至 13 日 20 时的 12 小时降雨量(右)

湘东偏北地区,与实况湘东地区出现的暴雨较为一致,而对于湘西南地区的暴雨大暴雨 GRAPES_GFS 模式明显漏报。从 GRAPES-3KM、华东、华南中尺度模式看,中尺度模式预报的暴雨和大暴雨主要位于

湘北地区,明显较实况偏北。

从11日20时模式起报的12日08时到13日08时降水量和实况对比(图9)来看,EC和GRAPES_GFS 大尺度模式对暖区暴雨预报效果较差,从GRAPES-3KM、华东、华南中尺度模式看对于暖区暴雨有一定 体现,但是与实况相比,明显暴雨预报与实况相比偏大。GRAPES-3KM 对湘东南暴雨较实况相比较好, 而对于邵阳西南部暴雨,GRAPES-3KM预报的暴雨落区明显偏北偏西。

从 10 日 20 时多模式起报的 12 小时降雨对比(图 10 左)来看,欧洲中心与 GRAPES-GFS 全球模式对 于暴雨和大暴雨未体现,日本、德国预报了暴雨,但是暴雨位置与实况相比,有很大差异。从 GRAPES-3km、 广州、上海中尺度模式看,均预报了大暴雨中心,但是中心位置与实况相比有较大差距。

从 12 日 08 时多模式起报的 12 小时降雨对比(图 10 右)来看,欧洲中心与 GRAPES-GFS 全球模式对 于绥宁、城步暴雨未有体现。广州、上海中尺度模式临近预报对于邵阳南部暴雨有体现,暴雨位置与实 况一致性也较好。

从 EC (图 11)和 GRAPES-GFS (图 12)的 500 百帕高度场对比检验来看,10 日 20 时初值场,EC 较 GRAPES-GFS 更接近实况,EC 在甘肃北部的弱脊预报偏弱,导致 11 日 08 时在湖北地区的槽较实况也 偏弱,588 线西段位置与实况相比位置过于偏东。GRAPES-GFS 初值场存在相同的问题,且位于四川盆 地的槽预报也有偏差,在 11 日 08 时,576 等值线出现了两个短波槽与实况经向度较大的槽有很大差异,580 线和 584 线在湖南一带的预报位置和实况偏差也较大。

Figure 11. Comparison between the 500 hPa altitude field reported by EC at 00:00 (left) and 12:00 (right) at 20:00 on 10th and the actual field (live field: black line, forecast field: red line) 图 11. 10 日 20 时 EC 起报的 00 时(左)、12 时(右) 500 百帕高度场与实况场对比(实况场:黑色线,预报场:红色线)

Figure 12. Comparison between the 500 hPa altitude field reported by GRAPES-GFS at 00:00 (left) and 12:00 (right) at 20:00 on 10th and the actual field (live field: black line, forecast field: red line) 图 12. 10 日 20 时 GRAPES-GFS 起报的 00 时(左)和 12 时(右) 500 百帕高度场与实况场对比(实况场:黑色线,预报场: 红色线)

从 GRAPES-GFS 850 百帕风场检验(图 13)来看,10 日 20 时初值场,模式低涡和切变线位置与实况 基本一致,华南大面积低空急流比实况偏强。11 日 08 时,实况湖南怀化已经转为偏西风,而模式预报 的风场为东南风,切变线位置比实况偏北,湖北地区冷空气较实况相比偏弱,导致切变线移动较实况移 动偏慢,模式预报的暴雨也较实况偏北。

Figure 13. Comparison between the 850 hPa wind field and the actual field reported by GRAPES-GFS at 00:00 (left) and 12:00 (right) at 20:00 on 10th and the actual field (live field: black line, forecast field: red line)
图 13. 10 日 20 时 GRAPES-GFS 起报的 00 时(左)和 12 时(右) 850 hPa 风场与实况场对比(实况场:黑色线,预报场: 红色线)

从 GRAPES-GFS 10 米风场检验(图 14)看, 初值场风场与实况差异较小, 到 11 日 08 时地面辐合线较 实况比偏北,造成模式预报的降雨偏北。

Figure 14. Comparison between the 10 meter wind and the actual field reported by GRAPES-GFS at 00:00 (left) and 12:00 (right) at 20:00 on 10th and the actual field (live field: black line, forecast field: red line)
图 14. 10 日 20 时 GRAPES-GFS 起报的 00 时(左)和 12 时(右) 10 米风与实况场对比(实况场:黑色线,预报场: 红色线)

4. 结论与讨论

1) 此次暴雨是在高空槽东移、低空急流、低空切变线共同作用下发生的,地面倒槽发展、地面辐合 线有效地触发了此次暴雨。

2) 白天地面倒槽的发展、地面辐合线对暖区暴雨、冰雹、雷暴大风等天气有一定的指示作用。

3) 当预报有无冰雹、或者预报冰雹大小时,不能只局限于 0℃、-20℃层高度,要同时结合 CAPE、 K 指数、垂直风切变、地面最高温度、地面辐合线来综合判断有无冰雹或冰雹尺寸。

4) 对于暴雨的强度和落区,全球模式临近时次的预报效果并不理想,而中尺度模式的临近预报对于 暴雨、大暴雨有指示意义,但是在工作中要注意,有时候中尺度模式的大暴雨虽然能预报出来,但是大 暴雨的落区需要进行订正。

5) 本次过程的 GRAPES-GFS 预报场来看,12 小时至 36 小时预报时效的 500 百帕,与实况相比有很 大的差异,尤其是对北方冷空气、高空槽的预报性能较差;从 850 百帕风场看,GRAPES-GFS 的 12 小 时预报时效对于北方的冷空气活动预报性能较差。

基金项目

湖南省气象局 2022 年研究型业务预报预测专项(XQKJ22C004)资助。

参考文献

- [1] 许霖,姚蓉,陈红专,等. 2017 年湖南一次极端降雨过程特征及成因分析[J]. 沙漠与绿洲气象, 2020, 14(1): 31-39.
- [2] 陈红专,叶成志,陈静静,等.2017年盛夏湖南持续性暴雨过程的水汽输送和收支特征分析[J]. 气象,2019,45(9): 1213-1226.
- [3] 廖春花, 刘红武, 徐靖宇. 湖南一次暴雨灾害的中尺度特征及可预报性研究[J]. 湖北农业科学, 2021, 60(21): 43-48.
- [4] 毛紫怡, 李国平, 许霖. 湖南一次持续性暴雨过程的水汽输送与收支特征[J]. 暴雨灾害, 2021, 40(5): 513-522.
- [5] 唐佳, 叶成志, 唐明晖, 等. 弱天气尺度背景下湖南两次暖区暴雨对比分析[J]. 高原气象, 2021, 40(4): 815-828.
- [6] 陈红专,叶成志,唐明晖. 2011 年 6 月湖南两次暴雨过程的中尺度特征对比分析[J]. 气象, 2013, 39(12): 1580-1590.
- [7] 刘红武, 尹忠海, 杨令, 等. 湖南一次暖区极端特大暴雨多尺度特征分析[J]. 中低纬山地气象, 2019, 43(5): 7-15.