Published Online November 2014 in Hans. http://dx.doi.org/10.12677/orf.2014.44008

Applications of Fuzzy DEA to School-Running Benefit Evaluation of Higher Vocational Colleges

Xiaohong Zhang¹, Yingwu Cao²

¹College of Arts and Sciences, Shanghai Maritime University, Shanghai

²Jinhua Vocational Technology College, Jinhua

Email: zxhonghz@263.net, zhangxh@shmtu.edu.cn

Received: Sep. 30th, 2014; revised: Oct. 13th, 2014; accepted: Oct. 20th, 2014

Copyright © 2014 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

The fuzzy DEA model and its solution method are introduced. Based on the actual data of 8 higher vocational colleges in Zhejiang province, the concrete applications of fuzzy DEA model to benefit evaluation of school-running in higher vocational colleges are discussed by using MATLAB. Finally, the calculation results are analyzed.

Keywords

Data Envelopment Analysis, Fuzzy DEA, Linear Programming, Evaluation

模糊DEA在高职院校办学效益 评价中的应用

张小红1, 曹鹦鹉2

1上海海事大学, 文理学院, 上海

²金华职业技术学院,师范学院,金华

Email: zxhonghz@263.net, zhangxh@shmtu.edu.cn

收稿日期: 2014年9月30日; 修回日期: 2014年10月13日; 录用日期: 2014年10月20日

摘要

介绍了模糊DEA模型及其求解方法。依据浙江省8所高职院校的实际数据,并借助MATLAB讨论了模糊 DEA模型在高职院校办学效益评价中的具体应用。最后,对计算结果进行了分析。

关键词

数据包络分析,模糊DEA,线性规划,办学效益,评价

1. 引言

数据包络分析(DEA, Data Envelopment Analysis)是由 A. Charnes、W. W. Coopor 和 E. Rhodes 于 1978 年提出的一种系统分析方法,适合对若干同类型的具有多输入、多输出的部门(称作决策单元,即 Decision Making Units,简记为 DMU)进行相对效率评价和比较分析。DEA 方法以相对效率概念为基础,以凸分析和线性规划为工具,应用数学模型计算比较决策单元之间的相对有效性(DEA 有效)。目前,专家学者已经将 DEA 方法推广到具有不确定性或模糊性的多输入、多输出决策单元系统中,提出了不确定数据包络分析、模糊数据包络分析、粗糙 DEA 等多种模型(参见文献[1]-[4]);同时,这些模型被应用于许多领域(参见文献[5]-[7])。本文通过实例讨论模糊 DEA 在高职院校办学效益评价中的具体应用。

2. 模糊 DEA 模型概述

对于基本 DEA 模型 CCR(参见文献[1] [2]),有"基于输入"和"基于输出"两种形式。"基于输入"是指在保持产出(输出) Y_0 基本不变的情况下将投入(输入) X_0 尽量减少;如果已经无法减少,则说明决策单元 DMU $_0$ 是有效的。"基于输出的 CCR 模型",是在保持投入(输入) X_0 基本不变的情况下将产出(输出) Y_0 尽量扩大;如果已经无法扩大,则说明决策单元 DMU $_0$ 是有效的。当输入输出指标用模糊数(常用的是三角模糊数,参见[8])表示时,相应的评价模型被称为模糊 DEA(Fuzzy DEA)。

本文沿用文献[1]中的记号,对于模糊数 \tilde{A} 和实数 $\alpha \in [0,1]$, \tilde{A} 的 α 截集 $A_{\alpha} = \{x \in R | \mu_{\tilde{A}}(x) \geq \alpha\}$ 是实数域上的一个分明区间,记为 $A_{\alpha} = [A_{\alpha}^{L}, A_{\alpha}^{R}]$,其中 $A_{\alpha}^{L}, A_{\alpha}^{R}$ 分别表示区间的左右边界。特别地,对三角模糊数 $\tilde{N} = (n_{1}, n_{2}, n_{3})$, $N_{\alpha}^{L} = n_{1} + (n_{2} - n_{1})\alpha$, $N_{\alpha}^{R} = n_{3} - (n_{3} - n_{2})\alpha$ 。

设有 n 个决策单元 $DMU_j(j=1,2,\cdots,n)$,每个决策单元的输入和输出的数目分别是 $m \cdot l$ 。基于输入的模糊 CCR 模型是对基于输入的确定性 CCR 模型的推广,即考虑决策单元 $DMU_j(j=1,2,\cdots,n)$ 的输入输出指标由精确值变为模糊向量时的评价模型。此时,输入指标变为 $\tilde{X}_j = \left(\tilde{x}_{1j},\cdots,\tilde{x}_{mj}\right)^T > 0$,输出指标变为 $\tilde{Y}_i = \left(\tilde{y}_{1j},\cdots,\tilde{y}_{ji}\right)^T > 0$ 时,被评价单元 DMU_0 的相对有效性评价模型变为[1]:

 $\min \theta$

$$s.t. \quad \sum_{j=1}^{n} \lambda_{j} \tilde{X}_{j} + S^{-} = \theta \tilde{X}_{0},$$

$$\sum_{j=1}^{n} \lambda_{j} \tilde{Y}_{j} - S^{+} = \tilde{Y}_{0},$$

$$\lambda_{j} \geq 0, \quad j = 1, \dots, n,$$

$$S^{-} \geq 0, \quad S^{+} \geq 0.$$
(M1)

依据截集方法和 DEA 评价的思想,可将上述模型在 α 置信水平下分别转化为极大值规划和极小值规

划(均为确定型线性规划):

 $\min \theta$

$$s.t. \quad \sum_{\substack{j=1\\j\neq j_0}}^n \lambda_j X_{j\alpha}^R + \lambda_{j0} X_{0\alpha}^L + S^- = \theta X_{0\alpha}^L$$

$$\sum_{\substack{j=1\\j\neq j_0}}^n \lambda_j Y_{j\alpha}^L + \lambda_{j0} Y_{0\alpha}^R - S^+ = Y_{0\alpha}^R,$$

$$\lambda_j \ge 0, \quad j = 1, \dots, n,$$

$$S^- \ge 0, \quad S^+ \ge 0.$$
(M2)

 $\min \theta$

$$s.t. \quad \sum_{\substack{j=1\\j\neq j_0}}^{n} \lambda_j X_{j\alpha}^L + \lambda_{j0} X_{0\alpha}^R + S^- = \theta X_{0\alpha}^R$$

$$\sum_{\substack{j=1\\j\neq j_0}}^{n} \lambda_j Y_{j\alpha}^R + \lambda_{j0} Y_{0\alpha}^L - S^+ = Y_{0\alpha}^L,$$

$$\lambda_j \ge 0, \quad j = 1, \dots, n,$$

$$S^- \ge 0, \quad S^+ \ge 0.$$
(M3)

设线性规划(M2)的最优值及最优解为 $\left(\theta^{*}\right)_{\alpha}^{R}$, $\left(\lambda^{*}\right)_{\alpha}^{R}$, $\left(S^{-*}\right)_{\alpha}^{R}$, $\left(S^{+*}\right)_{\alpha}^{R}$, 那么[1]:

当 $\left(\theta^{*}\right)_{\alpha}^{R}=1$ 时,则被评价单元 DMU₀为 α 水平下的乐观弱模糊 DEA 有效的;

当 $\left(\theta^*\right)_{\alpha}^R=1$ 且 $\left(S^{-*}\right)_{\alpha}^R=\left(S^{+*}\right)_{\alpha}^R=0$ 时,则被评价单元 DMU $_0$ 为 α 水平下的乐观模糊 DEA 有效的。

设线性规划(M3)的最优值及最优解为 $\left(\theta^{*}\right)_{a}^{L}$, $\left(\lambda^{*}\right)_{a}^{L}$, $\left(S^{-*}\right)_{a}^{L}$, $\left(S^{+*}\right)_{a}^{L}$,那么[1]:

当 $\left(\sigma^{*}\right)_{\alpha}^{L}=1$ 时,则被评价单元 DMU_{0} 为 α 水平下的悲观弱模糊 DEA 有效的;

当 $\left(\sigma^*\right)_{\alpha}^L = 1$ 且 $\left(S^{-*}\right)_{\alpha}^L = \left(S^{+*}\right)_{\alpha}^L = 0$ 时,则被评价单元 DMU_0 为 α 水平下的悲观模糊 DEA 有效的。

在应用上述基于输入的模糊 DEA 模型评价决策单元的相对有效性时,可以采用"平均置信有效性"方法对决策单元进行有效性排序,即

设在分等级置信水平 $\alpha_i = i/k$ $(i=1,\cdots,k)$ 下(k 为事先指定的取点数量), 决策单元相对有效性(对应前述模型 M2、M3 的最优值)分别为 $\left(\theta^*\right)_{\alpha}^L$, $\left(\theta^*\right)_{\alpha}^R$, 则决策单元的平均置信有效性为:

$$\overline{\theta} = \frac{\sum_{i=1}^{k} \alpha_{i} \left[\left(\theta^{*} \right)_{\alpha_{i}}^{L} + \left(\theta^{*} \right)_{\alpha_{i}}^{R} \right]}{2 \cdot \sum_{i=1}^{k} \alpha_{i}}.$$

对于基于输入的模糊 DEA 模型来说, $\bar{\theta}$ 越大则决策单元的有效性越强。

3. 模糊 DEA 应用于办学效益的评价

选择浙江省 8 所高职院校 2012 年的实际数据,应用模糊 DEA 方法并借助 MATLAB 软件进行详细计算。

3.1. 数据准备

本文使用的相关基本数据来自中国高职高专教育网($\underline{\text{http://www.tech.net.cn/web/index.aspx}}$)专栏"高等职业教育人才培养质量年度报告"(2012 年)。尽管基本数据是真实的,但由于一些评价指标和权重具有主观性(且部分学校的个别数据缺失),为了不引起"对号入座"等不必要的麻烦,这里分别用 $\underline{\text{DMU}_1}$ ~ $\underline{\text{DMU}_8}$ 表示相关高职院校(不明确标示其对应学校的名称)。

3.2. 评价指标体系

将采用如下评价指标体系: 三项输入指标, 三项输出指标(含两项模糊指标)。

- X_1 专任教师人数,单位:百人;
- X_3 —— 教职工总人数,单位:百人;
- X_3 ——年度新增经费投入,单位:千万元;
- Y.——毕业生数量,单位:千人;
- Y₂——优质教学成果得分,用五分值评定、用[0,5]上的三角模糊数表示;
- Y3——毕业生质量得分,用五分值评定、用[0,5]上的三角模糊数表示。

对于上述输入输出指标数据, X_1 , X_2 , X_3 及 Y_1 取自中国高职高专教育网公布的相关高职院校 2012 年度数据; Y_2 依据年度报告中省级以上精品课程、省级以上重点专业、示范实训基地及产学研基地、教学研究成果及获奖等信息综合考虑,给出评价数据(用三角模糊数表示); Y_3 依据年度报告中毕业生就业率、就业去向、学生参加各种竞赛获奖、学生毕业设计及毕业实习等信息综合考虑,给出评价数据(用三角模糊数表示)。

最后得到的 8 所高职院校各指标数据如表 1 所示,对于三角模糊数分别使用 \tilde{N}_{11} , \tilde{N}_{12} , \tilde{N}_{21} , \tilde{N}_{22} … , \tilde{N}_{81} , \tilde{N}_{82} 来表示:

3.3. 计算过程

以下采用"基于输入的模糊 DEA"模型对上述 8 所高职院校进行办学效益评价。 根据表 1 中的数据,与高职院校 DMU₁ 相对应的模糊 DEA 评价规划为: 称为(P1)

 Table 1. Input and output indexes data of eight Vocational Colleges

 表 1. 八所高职院校输入输出指标数据

高职院校	输入指标			输出指标			
	$X_{_1}$	X_{2}	X_3	<i>Y</i> ₁	Y ₂	$Y_{_3}$	
DMU_1	3.66	6.33	2.19	3.12	$\tilde{N}_{11} = (2.58, 3.82, 4.85)$	$\tilde{N}_{12} = (2.77, 3.98, 4.95)$	
DMU_2	3.50	5.60	2.57	2.80	$\tilde{N}_{21} = (2.15, 3.01, 4.26)$	$\tilde{N}_{22} = (2.65, 3.42, 4.79)$	
DMU_3	3.18	5.58	3.80	2.59	$\tilde{N}_{31} = (3.37, 4.50, 4.95)$	$\tilde{N}_{32} = (3.21, 4.52, 5.00)$	
DMU_4	3.02	3.82	1.15	2.35	$\tilde{N}_{41} = (2.00, 2.95, 3.97)$	$\tilde{N}_{42} = (2.35, 3.08, 4.06)$	
DMU_5	9.82	15.03	1.89	7.57	$\tilde{N}_{51} = (3.05, 4.45, 5.00)$	$\tilde{N}_{52} = (3.23, 4.34, 4.96)$	
DMU_6	3.30	4.20	1.26	2.58	$\tilde{N}_{61} = (2.01, 2.83, 3.92)$	$\tilde{N}_{62} = (2.15, 3.00, 3.87)$	
DMU_7	3.11	5.21	1.34	3.04	$\tilde{N}_{71} = (2.66, 3.28, 3.89)$	$\tilde{N}_{72} = (2.45, 3.54, 4.03)$	
DMU_8	3.14	6.00	4.02	3.28	$\tilde{N}_{81} = (3.75, 4.37, 5.00)$	$\tilde{N}_{82} = (3.60, 4.00, 4.76)$	

 $\min \theta$

$$\begin{split} s.t. & \quad 3.66\lambda_1 + 3.50\lambda_2 + 3.18\lambda_3 + 3.02\lambda_4 + 9.82\lambda_5 + 3.30\lambda_6 + 3.11\lambda_7 + 3.14\lambda_8 \leq 3.66\theta, \\ & \quad 6.33\lambda_1 + 5.60\lambda_2 + 5.58\lambda_3 + 3.82\lambda_4 + 15.03\lambda_5 + 4.20\lambda_6 + 5.21\lambda_7 + 6.00\lambda_8 \leq 6.33\theta, \\ & \quad 2.19\lambda_1 + 2.57\lambda_2 + 3.80\lambda_3 + 1.15\lambda_4 + 1.89\lambda_5 + 1.26\lambda_6 + 1.34\lambda_7 + 4.02\lambda_8 \leq 2.19\theta, \\ & \quad 3.12\lambda_1 + 2.80\lambda_2 + 2.59\lambda_3 + 2.35\lambda_4 + 7.57\lambda_5 + 2.58\lambda_6 + 3.04\lambda_7 + 3.28\lambda_8 \geq 3.12, \\ & \quad \tilde{N}_{11}\lambda_1 + \tilde{N}_{21}\lambda_2 + \tilde{N}_{31}\lambda_3 + \tilde{N}_{41}\lambda_4 + \tilde{N}_{51}\lambda_5 + \tilde{N}_{61}\lambda_6 + \tilde{N}_{71}\lambda_7 + \tilde{N}_{81}\lambda_8 \geq \tilde{N}_{11}, \\ & \quad \tilde{N}_{12}\lambda_1 + \tilde{N}_{22}\lambda_2 + \tilde{N}_{32}\lambda_3 + \tilde{N}_{42}\lambda_4 + \tilde{N}_{52}\lambda_5 + \tilde{N}_{62}\lambda_6 + \tilde{N}_{72}\lambda_7 + \tilde{N}_{82}\lambda_8 \geq \tilde{N}_{12}, \\ & \quad \lambda_j \geq 0, \quad j = 1, \cdots, 8. \end{split}$$

由于

$$\begin{split} & \left(\tilde{N}_{11}\right)_{\alpha}^{L} = 2.58 + 1.24\alpha, \quad \left(\tilde{N}_{11}\right)_{\alpha}^{R} = 4.85 - 1.03\alpha; \quad \left(\tilde{N}_{12}\right)_{\alpha}^{L} = 2.77 + 1.21\alpha, \quad \left(\tilde{N}_{12}\right)_{\alpha}^{R} = 4.95 - 0.97\alpha; \\ & \left(\tilde{N}_{21}\right)_{\alpha}^{L} = 2.15 + 0.86\alpha, \quad \left(\tilde{N}_{21}\right)_{\alpha}^{R} = 4.26 - 1.25\alpha; \quad \left(\tilde{N}_{22}\right)_{\alpha}^{L} = 2.65 + 0.77\alpha, \quad \left(\tilde{N}_{22}\right)_{\alpha}^{R} = 4.79 - 1.37\alpha; \\ & \left(\tilde{N}_{31}\right)_{\alpha}^{L} = 3.37 + 1.13\alpha, \quad \left(\tilde{N}_{31}\right)_{\alpha}^{R} = 4.95 - 0.45\alpha; \quad \left(\tilde{N}_{32}\right)_{\alpha}^{L} = 3.21 + 1.31\alpha, \quad \left(\tilde{N}_{32}\right)_{\alpha}^{R} = 5.00 - 0.48\alpha; \\ & \left(\tilde{N}_{41}\right)_{\alpha}^{L} = 2.00 + 0.95\alpha, \quad \left(\tilde{N}_{41}\right)_{\alpha}^{R} = 3.97 - 1.02\alpha; \quad \left(\tilde{N}_{42}\right)_{\alpha}^{L} = 2.35 + 0.73\alpha, \quad \left(\tilde{N}_{42}\right)_{\alpha}^{R} = 4.06 - 0.98\alpha; \\ & \left(\tilde{N}_{51}\right)_{\alpha}^{L} = 3.50 + 0.95\alpha, \quad \left(\tilde{N}_{51}\right)_{\alpha}^{R} = 5.00 - 0.55\alpha; \quad \left(\tilde{N}_{52}\right)_{\alpha}^{L} = 3.23 + 1.11\alpha, \quad \left(\tilde{N}_{52}\right)_{\alpha}^{R} = 4.96 - 0.62\alpha; \\ & \left(\tilde{N}_{61}\right)_{\alpha}^{L} = 2.01 + 0.82\alpha, \quad \left(\tilde{N}_{61}\right)_{\alpha}^{R} = 3.92 - 1.09\alpha; \quad \left(\tilde{N}_{62}\right)_{\alpha}^{L} = 2.15 + 0.85\alpha, \quad \left(\tilde{N}_{62}\right)_{\alpha}^{R} = 3.87 - 0.87\alpha; \\ & \left(\tilde{N}_{71}\right)_{\alpha}^{L} = 2.66 + 0.62\alpha, \quad \left(\tilde{N}_{71}\right)_{\alpha}^{R} = 3.89 - 0.61\alpha; \quad \left(\tilde{N}_{72}\right)_{\alpha}^{L} = 2.45 + 1.09\alpha, \quad \left(\tilde{N}_{72}\right)_{\alpha}^{R} = 4.03 - 0.49\alpha; \\ & \left(\tilde{N}_{81}\right)_{\alpha}^{L} = 3.75 + 0.62\alpha, \quad \left(\tilde{N}_{81}\right)_{\alpha}^{R} = 5.00 - 0.63\alpha; \quad \left(\tilde{N}_{82}\right)_{\alpha}^{L} = 3.60 + 0.40\alpha, \quad \left(\tilde{N}_{82}\right)_{\alpha}^{R} = 4.76 - 0.76\alpha. \\ \end{split}$$

所以,依照取截集的方法,在置信水平 α 下,求解模糊规划问题(P1)可转化为求解如下两个普通线性规划问题: 分别称为(P1₁)和(P1₂)

 $\min \theta$

$$\begin{split} s.t. & & 3.66\lambda_1 + 3.50\lambda_2 + 3.18\lambda_3 + 3.02\lambda_4 + 9.82\lambda_5 + 3.30\lambda_6 + 3.11\lambda_7 + 3.14\lambda_8 \leq 3.66\theta, \\ & & 6.33\lambda_1 + 5.60\lambda_2 + 5.58\lambda_3 + 3.82\lambda_4 + 15.03\lambda_5 + 4.20\lambda_6 + 5.21\lambda_7 + 6.00\lambda_8 \leq 6.33\theta, \\ & & 2.19\lambda_1 + 2.57\lambda_2 + 3.80\lambda_3 + 1.15\lambda_4 + 1.89\lambda_5 + 1.26\lambda_6 + 1.34\lambda_7 + 4.02\lambda_8 \leq 2.19\theta, \\ & & 3.12\lambda_1 + 2.80\lambda_2 + 2.59\lambda_3 + 2.35\lambda_4 + 7.57\lambda_5 + 2.58\lambda_6 + 3.04\lambda_7 + 3.28\lambda_8 \geq 3.12, \\ & & \left(4.85 - 1.03\alpha\right)\lambda_1 + \left(2.15 + 0.86\alpha\right)\lambda_2 + \left(3.37 + 1.13\alpha\right)\lambda_3 + \left(2.00 + 0.95\alpha\right)\lambda_4 + \left(3.50 + 0.95\alpha\right)\lambda_5 \\ & & + \left(2.01 + 0.82\alpha\right)\lambda_6 + \left(2.66 + 0.62\alpha\right)\lambda_7 + \left(3.75 + 0.62\alpha\right)\lambda_8 \geq \left(4.85 - 1.03\alpha\right), \\ & & \left(4.95 - 0.97\alpha\right)\lambda_1 + \left(2.65 + 0.77\alpha\right)\lambda_2 + \left(3.21 + 1.31\alpha\right)\lambda_3 + \left(2.35 + 0.73\alpha\right)\lambda_4 + \left(3.23 + 1.11\alpha\right)\lambda_5 \\ & & + \left(2.15 + 0.85\alpha\right)\lambda_6 + \left(2.45 + 1.09\alpha\right)\lambda_7 + \left(3.60 + 0.40\alpha\right)\lambda_8 \geq \left(4.95 - 0.97\alpha\right), \\ & \lambda_{j_*} \geq 0, \quad j = 1, \cdots, 8. \end{split}$$

 $\min \theta$

$$\begin{split} s.t. & \quad 3.66\lambda_1 + 3.50\lambda_2 + 3.18\lambda_3 + 3.02\lambda_4 + 9.82\lambda_5 + 3.30\lambda_6 + 3.11\lambda_7 + 3.14\lambda_8 \leq 3.66\theta, \\ & \quad 6.33\lambda_1 + 5.60\lambda_2 + 5.58\lambda_3 + 3.82\lambda_4 + 15.03\lambda_5 + 4.20\lambda_6 + 5.21\lambda_7 + 6.00\lambda_8 \leq 6.33\theta, \\ & \quad 2.19\lambda_1 + 2.57\lambda_2 + 3.80\lambda_3 + 1.15\lambda_4 + 1.89\lambda_5 + 1.26\lambda_6 + 1.34\lambda_7 + 4.02\lambda_8 \leq 2.19\theta, \\ & \quad 3.12\lambda_1 + 2.80\lambda_2 + 2.59\lambda_3 + 2.35\lambda_4 + 7.57\lambda_5 + 2.58\lambda_6 + 3.04\lambda_7 + 3.28\lambda_8 \geq 3.12, \\ & \quad \left(2.58 + 1.24\alpha\right)\lambda_1 + \left(4.26 - 1.25\alpha\right)\lambda_2 + \left(4.95 - 0.45\alpha\right)\lambda_3 + \left(3.97 - 1.02\alpha\right)\lambda_4 + \left(5.00 - 0.55\alpha\right)\lambda_5 \\ & \quad + \left(3.92 - 1.09\alpha\right)\lambda_6 + \left(3.89 - 0.61\alpha\right)\lambda_7 + \left(5.00 - 0.63\alpha\right)\lambda_8 \geq \left(2.58 + 1.24\alpha\right), \end{split}$$

 $(2.77 + 1.21\alpha)\lambda_{1} + (4.79 - 1.37\alpha)\lambda_{2} + (5.00 - 0.48\alpha)\lambda_{3} + (4.06 - 0.98\alpha)\lambda_{4} + (4.96 - 0.62\alpha)\lambda_{5}$ $+ (3.87 - 0.87\alpha)\lambda_{6} + (4.03 - 0.49\alpha)\lambda_{7} + (4.76 - 0.76\alpha)\lambda_{8} \ge (2.77 + 1.21\alpha),$ $\lambda_{j} \ge 0, \quad j = 1, \dots, 8.$

选取不同置信水平 α 值,分别求解线性规划(P1₁)及(P1₂)可得到高职院校 DMU₁ 的模糊 DEA 有效区间 $\left[\left(\theta^*\right)_{\alpha}^L,\left(\theta^*\right)_{\alpha}^R\right]$ 。比如,取 α = 0.2,借助 MATLAB 求解(P1₁)、(P1₂)得到模糊 DEA 有效区间为: $\left[\left(\theta^*\right)_{\alpha}^L,\left(\theta^*\right)_{\alpha}^R\right] = \left[0.8604,1.00\right]$ 计算过程如图 1 及图 2 示。

从图 1、图 2 的计算结果可以看出,对于置信水平 $\alpha=0.2$,高职院校 DMU₁ 是 " 乐观模糊 DEA 有效的",但不是" 悲观模糊 DEA 有效的"。

类似地,分别取 α = 0.4,0.6,0.8,1 可得到高职院校 DMU₁ 的模糊 DEA 有效区间为: [0.8604,1],[0.8604,1],[0.8604,1],[0.9207,0.9207]。

实际上,可在 MATLAB 中使用参数,重复使用同一段代码计算不同置信水平下 DMU₁ 的模糊 DEA 有效区间。含参 MATLAB 程序如下所示:

f = [0, 0, 0, 0, 0, 0, 0, 0, 1]:

 $A = \begin{bmatrix} 3.66, 3.5, 3.18, 3.02, 9.82, 3.30, 3.11, 3.14, -3.66; 6.33, 5.6, 5.58, 3.82, 15.03, 4.2, 5.21, 6, -6.33; 2.19, 2.57, 3.8, 1.15, 1.89, 1.26, 1.34, 4.02, -2.19; -3.12, -2.8, -2.59, -2.35, -7.57, -2.58, -3.04, -3.28, 0; -(4.85-1.03*a), -(2.15 + 0.86*a), -(3.37 + 1.13*a), -(2.00 + 0.95*a), -(3.5 + 0.95*a), -(2.01 + 0.82*a), -(2.66 + 0.62*a), -(3.75 + 0.62*a), 0; -(4.95 - 0.97*a), -(2.65 + 0.77*a), -(3.21 + 1.31*a), -(2.35 + 0.73*a), -(3.23 + 1.11*a), -(2.15 + 0.85*a), -(2.45 + 1.09*a), -(3.6 + 0.4*a), 0];$

 $1b = [0, 0, 0, 0, 0, 0, 0, -\inf]; ub = [];$

b = [0, 0, 0, -3.12, -(4.85 - 1.03*a), -(4.95 - 0.97*a)];

linprog(f, A, b, [], [], lb, ub) f = [0, 0, 0, 0, 0, 0, 0, 0, 1];

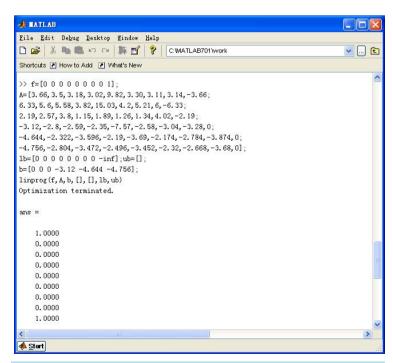


Figure 1. The calculation results by using MATLAB (1) 图 1. 使用 MATLAB 的计算结果(1)

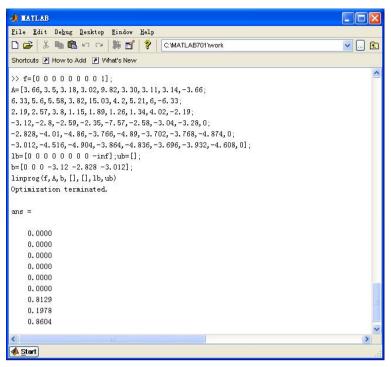


Figure 2. The calculation results by using MATLAB (2)
图 2. 使用 MATLAB 的计算结果(2)

A = [3.66, 3.5, 3.18, 3.02, 9.82, 3.30, 3.11, 3.14, -3.66; 6.33, 5.6, 5.58, 3.82, 15.03, 4.2, 5.21, 6, -6.33; 2.19, 2.57, 3.8, 1.15, 1.89, 1.26, 1.34, 4.02, -2.19; -3.12, -2.8, -2.59, -2.35, -7.57, -2.58, -3.04, -3.28, 0; -(2.58 + 1.24*a), -(4.26 - 1.25*a), -(4.95 - 0.45*a), -(3.97 - 1.02*a), -(5 - 0.55*a), -(3.92 - 1.09*a), -(3.89 - 0.61*a), -(5 - 0.63*a), 0; -(2.77 + 1.21*a), -(4.79 - 1.37*a), -(5 - 0.48*a), -(4.06 - 0.98*a), -(4.96 - 0.62*a), -(3.87 - 0.87*a), -(4.03 - 0.49*a), -(4.76 - 0.76*a), 0];

1b = [0, 0, 0, 0, 0, 0, 0, -inf]; ub = [];

b = [0, 0, 0, -3.12, -(2.58 + 1.24*a), -(2.77 + 1.21*a)];

linprog(f, A, b, [], [], lb, ub)

按照相同的方法,可以给出高职院校 DMU_2 、 DMU_3 、……、 DMU_8 在置信水平 α 分别取 0.2、0.4、0.6、0.8、1.0 时的模糊 DEA 有效区间,最终结果如表 2 所示。

应用平均置信有效性公式,可以得到前述 8 所高职院校的平均置信有效值 $\bar{\theta}$ 分别为: 0.927, 0.893, 0.979, 1, 1, 0.999, 1, 1。

据此,8 所高职院校的办学效益排序为:DMU₄,DMU₅,DMU₇,DMU₈(并列);DMU₆;DMU₃;DMU₁;DMU₂。

4. 计算结果分析

依据上述结果,并对照表 1 中的原始数据,可以得到许多定性结论,这对于决策者提高办学效益、提升管理水平有重要价值,比如:

1) 比较两所学校 DMU_3 和 DMU_4 的数据就会发现,尽管其专任教师数量和毕业生人数相当,甚至 DMU_3 的学生质量高于 DMU_4 (可从 \tilde{N}_{32} 及 \tilde{N}_{42} 的数据看出),但 DMU_3 的办学效益却低于 DMU_4 。究其原因,主要是 DMU_3 的经费投入、人员成本较高(专任教师在教职工中的比例较低);

 Table 2. Fuzzy DEA valid interval of eight Higher Vocational Colleges

 表 2. 八所高职院校的模糊 DEA 有效区间

	0.2	0.4	0.6	0.8	1
DMU ₁	[0.8604, 1]	[0.8604, 1]	[0.8604, 1]	[0.8604, 1]	[0.9207, 0.9207]
DMU_2	[0.8502, 1]	[0.8502, 1]	[0.8502, 1]	[0.8502, 0.9214]	[0.8615, 0.8615]
DMU_3	[0.8200, 1]	[0.8573, 1]	[0.9539, 1]	[1, 1]	[1, 1]
DMU_4	[1, 1]	[1, 1]	[1, 1]	[1, 1]	[1, 1]
DMU_5	[1, 1]	[1, 1]	[1,1]	[1, 1]	[1, 1]
DMU_6	[0.9998,1]	[0.9998,1]	[0.9998, 1]	[0.9998, 1]	[0.9998, 0.9998]
DMU_7	[1, 1]	[1, 1]	[1, 1]	[1, 1]	[1, 1]
DMU_8	[1, 1]	[1, 1]	[1, 1]	[1, 1]	[1, 1]

2) 比较两所学校 DMU_1 和 DMU_8 的数据就会发现,尽管其专任教师数量、教职工总数、毕业生人数及质量相当,甚至 DMU_8 的经费投入高于 DMU_1 ,但 DMU_8 的办学效益仍高于 DMU_1 。究其原因,主要是 DMU_8 的优质教学成果得分明显高于 DMU_1 (可从 \tilde{N}_{11} 及 \tilde{N}_{81} 的数据看出)。

同时,对照实际情况,那些仅仅追求所谓的"大手笔"、硬件投入非常高的"豪华"学校,其办学效益往往很低。

以上这些结论表明,高职院校的办学效益本质上体现在学校的内涵建设上,如何练好高职院校的"内功"才是管理者需要认真考虑的问题。

致 谢

本文得到上海海事大学重点课程建设项目的资助,特此致谢!

参考文献 (References)

- [1] 黄朝峰 (2009) 高校办学效益模糊 DEA 评价. 中国经济出版社, 北京.
- [2] 马占新 (2013) 数据包络分析及其应用案例. 科学出版社, 北京.
- [3] 刘盾, 胡培, 何鹏 (2010) 一种基于 DEA 模型的粗集决策方法. 统计与信息论坛, 25, 26-31.
- [4] 李岭 (2011) 一类 DEA 模型的应用研究. 中国管理信息化, 14, 71-73.
- [5] 梁权森, 彭新一 (2008) 基于 DEA 方法的研究型大学办学效益评价研究. 高等工程教育研究, 2, 83-86.
- [6] 许长青 (2012) 高等教育办学效益与成本控制: 基于 1996~2008 年的 DEA 实证分析. 黑龙江高教研究, 8, 1-8.
- [7] 陈辰, 胡甚平 (2012) 基于模糊 DEA 的航运公司安全管理有效性评价. 上海海事大学学报, 33, 12-15.
- [8] 张小红, 裴道武, 代建华 (2013) 模糊数学与 Rough 集理论. 清华大学出版社, 北京.