The Behavior of a Class of Functions Containing Parameter

Qi Wang^{1,2}, Weiling You^{2*}, Chunpeng Mo²

¹School of Mathematics and Information Science, Guangzhou University, Guangzhou Guangdong

²College of Science, College of Vocational and Technical Education, Guangxi University of Science and Technology, Liuzhou Guangxi

Email: qiwang1205@163.com, *675349028@qq.com

Received: Jul. 26th, 2016; accepted: Aug. 15th, 2016; published: Aug. 18th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we investigate a class of functions containing parameter and reveal the nature of the function with different parameters. We also use matlab to simulate the results, which verify the correctness of the conclusions.

Keywords

Stable Point, Zero Point, Eventually Monotone Increasing (Decreasing)

一类含参变量函数的性态

王 琦1,2, 尤卫玲2*, 莫春鹏2

¹广州大学,数学与信息科学学院,广东 广州 ²广西科技大学,理学院、职业技术教育学院,广西 柳州 Email: qiwang1205@163.com, ^{*}675349028@qq.com

收稿日期: 2016年7月26日; 录用日期: 2016年8月15日; 发布日期: 2016年8月18日

*通讯作者。

摘要

本文考察一类含参变量的函数,揭示函数在参数不同取值下的性态,并利用matlab进行了仿真,结果验证结论的正确性。

关键词

稳定点,零点,最终单调递增(减)

1. 引言

从现有的文献来看,对含参变量函数性态的研究甚少,而多数都是讨论含参变量函数的积分、Riemann 边值问题或 Hilbert 边值问题[1]-[3],梅宏则在文献[4]中给出了一类含参变量积分的常差分方程计算方法。

本文对一类特殊的带参变量函数的进行分析,揭示该类函数在参数不同取值下的性态。

本文考察如下函数:

$$f(x;\alpha) = \frac{x^x}{e^{x^{\alpha}}}, x > 0,$$

其中参数 $\alpha > 0$ 。

2. 主要结果

首先,函数 $f(x;\alpha)$ 对 x 求导数

$$\frac{\mathrm{d}}{\mathrm{d}x} f(x;\alpha) = \frac{x^{x}}{\mathrm{e}^{x^{\alpha}}} \left[\ln x + 1 - \alpha x^{\alpha - 1} \right],$$

 $\Leftrightarrow g(x;\alpha) = \ln x + 1 - \alpha x^{\alpha-1}$,则有

$$\frac{\mathrm{d}}{\mathrm{d}x}f\left(x;\alpha\right) = \frac{x^{x}}{\mathrm{e}^{x^{\alpha}}}g\left(x;\alpha\right) \tag{1}$$

同样,函数 $g(x;\alpha)$ 对x求导数

$$\frac{\mathrm{d}}{\mathrm{d}x}g\left(x;\alpha\right) = \frac{1-\alpha\left(\alpha-1\right)x^{\alpha-1}}{x},$$

再令 $h(x;\alpha)=1-\alpha(\alpha-1)x^{\alpha-1}$,则有

$$\frac{\mathrm{d}}{\mathrm{d}x}g\left(x;\alpha\right) = \frac{h\left(x;\alpha\right)}{x}\tag{2}$$

当 $\alpha \in (1,+\infty)$ 时,记 $x_s(\alpha) = \left[\alpha(\alpha-1)\right]^{\frac{1}{1-\alpha}}$,显然 $h(x_s(\alpha);\alpha) = 0$,因而 $x_s(\alpha)$ 是函数 $g(x;\alpha)$ 的稳定点。

引理 1 对于函数 $h(x;\alpha)$ 和 $g(x;\alpha)$, 下述成立:

- (i) 当 $\alpha \in (0,1)$ 时,对于任意x > 0,有 $h(x;\alpha) > 1$,从而 $g(x;\alpha)$ 关于x在 $(0,+\infty)$ 上严格单调递增。
- (ii) 当 α =1时,对于任意x>0,有 $h(x;\alpha)=1$,从而 $g(x;\alpha)$ 关于x在 $(0,+\infty)$ 上严格单调递增。
- (iii) 当 α ∈(1,+∞)时,有表 1 成立。

Table 1. The monotonicity of the function $g(x;\alpha)$ at the case $\alpha \in (1,+\infty)$

表 1. 函数 $g(x;\alpha)$ 在 $\alpha \in (1,+\infty)$ 下的单调性

х	$(0,x_s(\alpha))$	$x_{s}(\alpha)$	$(x_s(\alpha),+\infty)$
$h(x;\alpha)$	+	0	-
$g(x;\alpha)$	7	$g_{\max} = g\left(x_s(\alpha); \alpha\right)$	7

 $\mathbb{E}\lim_{x\to 0^{+}}g\left(x;\alpha\right)=\lim_{x\to +\infty}g\left(x;\alpha\right)=-\infty.$

证明 (i) 当 $\alpha \in (0,1)$ 时,对于任意 x > 0,有 $h(x;\alpha) = 1 - \alpha(\alpha - 1)x^{\alpha - 1} > 1$,由(2)知, $g(x;\alpha)$ 关于 x 在 $(0,+\infty)$ 上严格单调递增。

- (ii) 当 $\alpha = 1$ 时,对于任意x > 0,有 $h(x; \alpha) = 1 \alpha(\alpha 1)x^{\alpha 1} \equiv 1$,由(2)知, $g(x; \alpha)$ 关于x在 $(0, +\infty)$ 上严格单调递增。
- (iii) 当 $\alpha \in (1,+\infty)$ 时,注意到对任意x > 0,有 $\frac{\mathrm{d}}{\mathrm{d}x}h(x;\alpha) = -\alpha(\alpha-1)^2x^{\alpha-2} < 0$,所以 $h(x;\alpha)$ 在 $(0,+\infty)$ 上关于x严格单调递减。而 $\lim_{x \to 0^+} h(x;\alpha) = 1$, $\lim_{x \to +\infty} h(x;\alpha) = -\infty$,所以存在唯一的

$$x_s(\alpha) = [\alpha(\alpha-1)]^{\frac{1}{1-\alpha}} \in (0,+\infty)$$
 使得 $h(x_s(\alpha);\alpha) = 0$, 再结合(2)知表 1 成立。 而 $\lim_{x\to 0^+} g(x;\alpha) = -\infty$ 显然成

立。注意到
$$\lim_{x\to +\infty} \frac{\ln x}{x^{\alpha-1}} = 0$$
,故 $\lim_{x\to +\infty} g\left(x;\alpha\right) = \lim_{x\to +\infty} x^{\alpha-1} \left(\frac{\ln x}{x^{\alpha-1}} - \alpha\right) + 1 = -\infty$ 。因而

 $\lim_{\alpha \to \infty} g(x; \alpha) = \lim_{\alpha \to \infty} g(x; \alpha) = -\infty .$

定理 1 对于函数 $g(x;\alpha)$ 和 $f(x;\alpha)$, 下述成立:

(i) 当
$$\alpha \in (0,1)$$
时, $g(x;\alpha)$ 存在零点 $x_0(\alpha) \in \left(\frac{1}{e},1\right)$,有表 2 成立。

 $\mathbb{E}\lim_{\alpha\to 0^+} x_0(\alpha) = \frac{1}{e}, \lim_{\alpha\to 1^-} x_0(\alpha) = 1$

- (ii) 当 $\alpha = 1$ 时,有表3成立。
- (iii) 存在 α_{s1} , α_{s2} 满足 $1<\alpha_{s1}<\frac{3+\sqrt{5}}{2}<\alpha_{s2}<+\infty$,且
- (a) 当 $\alpha \in (1,\alpha_{s1})$ 时,存在 $x_1 \in (0,x_s(\alpha))$ 及 $x_2 \in (x_s(\alpha),+\infty)$ 使得表 4成立。
- (b) 当 $\alpha \in [\alpha_{s_1}, \alpha_{s_2}]$ 时,有表 5 成立。
- (c) 当 $\alpha \in (\alpha_{s_2}, +\infty)$ 时,存在 $x_3 \in (0, x_s(\alpha))$ 及 $x_4 \in (x_s(\alpha), +\infty)$ 使得表 6成立。

证明 (i) 当 $\alpha \in (0,1)$ 时,注意到 $g\left(\frac{1}{e};\alpha\right) = -\alpha e^{1-\alpha} < 0$, $g\left(1;\alpha\right) = 1-\alpha > 0$,再结合(1)、(2)及引理 1 (i)

可知,存在 $x_0(\alpha) \in \left(\frac{1}{e},1\right)$ 使得 $g\left(x_0(\alpha);\alpha\right) = 0$,从而表 2 成立。显然 $\lim_{\alpha \to 0^+} x_0(\alpha) = \frac{1}{e}$, $\lim_{\alpha \to 1^-} x_0(\alpha) = 1$ 。

- (ii) 当 α =1时,注意到 $\lim_{x\to 0^+} g(x;\alpha) = -\infty$, $\lim_{x\to +\infty} g(x;\alpha) = +\infty$ 及 $g(1;\alpha) = 0$,再结合(1)、(2)及引理 1 (ii) 可知表 3 成立。
 - (iii) 当 $\alpha \in (1,+\infty)$ 时,记 $I(\alpha) = \alpha 2 \ln \lceil \alpha (\alpha 1) \rceil$,由引理 1 (iii)知

Table 2. The monotonicity of the function $f(x;\alpha)$ at the case $\alpha \in (0,1)$

表 2. 函数 $f(x;\alpha)$ 在 $\alpha \in (0,1)$ 下的单调性

x	$\left(0,x_{_{0}}\left(lpha ight) ight)$	$x_{_{0}}(\alpha)$	$(x_0(\alpha),+\infty)$
$g(x;\alpha)$	-	0	+
$f(x;\alpha)$	>	$f_{\min} = f\left(x_0\left(\alpha\right); \alpha\right)$	7

Table 3. The monotonicity of the function $f(x;\alpha)$ at the case $\alpha = 1$

表 3. 函数 $f(x;\alpha)$ 在 $\alpha=1$ 下的单调性

x	(0,1)	1	(1,+∞)
$g(x;\alpha)$	-	0	+
$f(x;\alpha)$	\searrow	$f_{ ext{min}} = f\left(1; lpha ight)$	7

Table 4. The monotonicity of the function $f(x;\alpha)$ at the case $\alpha \in (1,\alpha_{s1})$

表 4. 函数 $f(x;\alpha)$ 在 $\alpha \in (1,\alpha_{s1})$ 下的单调性

x	$(0,x_1)$	X_1	(x_1,x_2)	X_2	$(x_2,+\infty)$
$g(x;\alpha)$	_	0	+	0	_
$f(x;\alpha)$	\searrow	$f_{ m min}$	7	$f_{ m max}$	>

Table 5. The monotonicity of the function $f(x;\alpha)$ at the case $\alpha \in [\alpha_{s_1}, \alpha_{s_2}]$

表 5. 函数 $f(x;\alpha)$ 在 $\alpha \in [\alpha_{s1},\alpha_{s2}]$ 下的单调性

x	$(0,x_s(\alpha))$	$x_s(\alpha)$	$(x_s(\alpha),+\infty)$
$g(x;\alpha)$	7	$g(x_s(\alpha);\alpha) \leq 0$	7
$f(x;\alpha)$	\searrow	\searrow	\searrow

Table 6. The monotonicity of the function $f(x;\alpha)$ at the case $\alpha \in (\alpha_{s2}, +\infty)$

表 6. 函数 $f(x;\alpha)$ 在 $\alpha \in (\alpha_{s2}, +\infty)$ 下的单调性

x	$(0,x_3)$	X_3	(x_3, x_4)	X_4	$(x_4,+\infty)$
$g(x;\alpha)$	_	0	+	0	_
$f(x;\alpha)$	7	$f_{ m min}$	7	$f_{ m max}$	7

 $\lim_{\alpha \to 1^+} I(\alpha) = \lim_{\alpha \to +\infty} I(\alpha) = +\infty$,从而有表 7 成立。

令 $g(x_s(\alpha);\alpha)=0$,可得 $\alpha=\alpha_{s1},\alpha_{s2}$ 满足 $1<\alpha_{s1}<\frac{3+\sqrt{5}}{2}<\alpha_{s2}<+\infty$,且有表 8 成立。

- (a) 当 $\alpha \in (1,\alpha_{s1})$ 时,由表 8 可知 $g(x_s(\alpha);\alpha) > 0$,再结合引理 1 (iii)及(1)知,存在 $x_1 \in (0,x_s(\alpha))$ 及 $x_2 \in (x_s(\alpha),+\infty)$ 使得表 4 成立。
 - (b) 当 $\alpha \in [\alpha_{s1},\alpha_{s2}]$ 时,由表 8 可知 $g\left(x_s\left(\alpha\right);\alpha\right) \leq 0$,再结合引理 1 (iii)及(1)知表 5 成立。

Table 7. The monotonicity of the function $I(\alpha)$

表 7. 函数 $I(\alpha)$ 的单调性

α	$\left(1, \frac{3+\sqrt{5}}{2}\right)$	$\frac{3+\sqrt{5}}{2}$	$\left(\frac{3+\sqrt{5}}{2},+\infty\right)$
$I'(\alpha)$ $I(\alpha)$	_ _	$0 \ I_{ m min}$	+

Table 8. The value of the function $g(x_s(\alpha);\alpha)$

表 8. 函数 $g(x_s(\alpha);\alpha)$ 的取值

α	$(1,\alpha_{s1})$	$lpha_{s1}$	$(lpha_{s1},lpha_{s2})$	a_{s2}	$(\alpha_{s_2}, +\infty)$
$I(\alpha)$	+	0	_	0	+
$g(x_s(\alpha);\alpha)$	+	0	-	0	+

(c) 当 $\alpha \in (\alpha_{s2}, +\infty)$ 时,由表 8 可知 $g(x_s(\alpha); \alpha) > 0$,再结合引理 1(iii)及(1)知,存在 $x_3 \in (0, x_s(\alpha))$ 及 $x_4 \in (x_s(\alpha), +\infty)$ 使得表 6 成立。

定理 2 对于函数 $f(x;\alpha)$, 下述成立:

- (i) $\stackrel{\text{def}}{=} \alpha \in (0,1]$ ff, $\lim_{x \to +\infty} f(x;\alpha) = +\infty$.
- (ii) 当 $\alpha \in (1, +\infty)$ 时, $\lim_{x \to +\infty} f(x; \alpha) = 0$ 。

证明 (i) 当 $\alpha \in (0,1]$ 时,由定理 1 知, $f(x;\alpha)$ 是关于变量 x 最终单调递增的,所以不妨设 $\lim_{n \to \infty} f(x;\alpha) = A$ 。显然 $A \neq 0$,下证 $A = +\infty$ 。反证,假设 $A \in (0,+\infty)$,则

$$\lim_{x \to +\infty} f(x; \alpha) = \lim_{x \to +\infty} \frac{x^{x}}{e^{x^{\alpha}}} = \lim_{x \to +\infty} \frac{\left(x^{x}\right)'}{\left(e^{x^{\alpha}}\right)'} = \lim_{x \to +\infty} \left(\frac{x^{x}}{e^{x^{\alpha}}} \cdot \frac{\ln x + 1}{\alpha x^{\alpha - 1}}\right) = +\infty,$$

与假设矛盾,因而 $\lim_{x\to +\infty} f(x;\alpha) = +\infty$ 。

(ii) 当 $\alpha \in (1,+\infty)$ 时,由定理 1 知, $f(x;\alpha)$ 是关于变量x最终单调递减的,注意到对任意x>0有 $f(x;\alpha)>0$,所以不妨设 $\lim_{x\to +\infty} f(x;\alpha)=B$ 。显然 $B\in [0,+\infty)$,下证 B=0。

$$\lim_{x \to +\infty} f(x; \alpha) = \lim_{x \to +\infty} \frac{x^{x}}{e^{x^{\alpha}}} = \lim_{x \to +\infty} \frac{\left(x^{x}\right)'}{\left(e^{x^{\alpha}}\right)'} = \lim_{x \to +\infty} \left(\frac{x^{x}}{e^{x^{\alpha}}} \cdot \frac{\ln x + 1}{\alpha x^{\alpha - 1}}\right) = B \cdot \frac{\ln x + 1}{\alpha x^{\alpha - 1}} = 0,$$

 $\mathbb{I} \lim_{x \to +\infty} f(x; \alpha) = 0.$

定理 3 对于 $x_s(\alpha)$ 有

$$x_{s}\left(\alpha\right) \begin{cases} >1, \stackrel{\omega}{=} \alpha \in \left(1, \frac{1+\sqrt{5}}{2}\right) \text{ By}; \\ =1, \stackrel{\omega}{=} \alpha = \frac{1+\sqrt{5}}{2} \text{ By}; \\ <1, \stackrel{\omega}{=} \alpha \in \left(\frac{1+\sqrt{5}}{2}, +\infty\right) \text{ By}; \end{cases}$$

$$\mathbb{H}\lim_{\alpha \to 1^+} x_s(\alpha) = +\infty$$
, $\lim_{\alpha \to +\infty} x_s(\alpha) = 1$.

证明 当
$$\alpha \in (1,+\infty)$$
时,方便起见,记 $L(\alpha) = 1 - x_s(\alpha)$, $l(\alpha) = 2\alpha - \alpha \ln \left\lceil \alpha(\alpha-1) \right\rceil - 1$ 。则

$$L'(\alpha) = \frac{x_s(\alpha)}{\alpha(1-\alpha)^2} \left\{ 2\alpha - \alpha \ln \left[\alpha(\alpha-1) \right] - 1 \right\} = \frac{x_s(\alpha)}{\alpha(1-\alpha)^2} l(\alpha) .$$

将 $l(\alpha)$ 对 α 分别求一阶导数和二阶导数

$$l'(\alpha) = -\ln[\alpha(\alpha-1)] - \frac{1}{\alpha-1}, \quad l''(\alpha) = -\frac{2\alpha^2 - 4\alpha + 1}{\alpha(\alpha-1)^2},$$

令
$$l''(\alpha) = 0$$
,得 $\overline{\alpha} = 1 + \frac{\sqrt{2}}{2} \in (1, +\infty)$ 。注意到 $l'(\overline{\alpha}) = -\ln \frac{1 + \sqrt{2}}{2} - \sqrt{2} < 0$,所以有表 9 成立。

即
$$l(\alpha)$$
 在 $(1,+\infty)$ 上严格单调递减。而 $\lim_{\alpha \to 1^+} l(\alpha) = +\infty$, $\lim_{\alpha \to +\infty} l(\alpha) = -\infty$, 所以存在唯一一点 $\alpha_l \in (1,+\infty)$,

使得
$$l(\alpha_l) = 0$$
,亦即 $L'(\alpha_l) = 0$ 。而 $L(\alpha_l) = 1 - e^{\frac{2\alpha_l - 1}{\alpha_l(1 - \alpha_l)}} > 0$, $\lim_{\alpha \to 1^+} L(\alpha) = -\infty$, $\lim_{\alpha \to +\infty} L(\alpha) = 0$, 从而有表 10 成立。

因此存在唯一一点
$$\alpha = \frac{1+\sqrt{5}}{2} \in (1,\alpha_l)$$
 使得 $L\left(\frac{1+\sqrt{5}}{2}\right) = 0$,且当 $\alpha \in \left(1,\frac{1+\sqrt{5}}{2}\right)$ 时, $L(\alpha) < 0$; 当

Table 9. The monotonicity of the function $l(\alpha)$

表 9. 函数 $l(\alpha)$ 的单调性

α	$(1,\overline{lpha})$	\overline{lpha}	$\left(\overline{lpha},+\infty ight)$
l''(lpha)	+	0	-
l'(lpha)	-	_	-
l(lpha)	>	\searrow	`\

Table 10. The monotonicity of the function $L(\alpha)$

表 10. 函数 $L(\alpha)$ 的单调性

α	$(1, \alpha_{_l})$	$\alpha_{_{l}}$	$(\alpha_{_{l}},+\infty)$
L'(lpha)	+	0	-
L(lpha)	7	+	\ <u></u>

3. 数值仿真

这一部分我们用 matlab 描绘在参数 α 不同取值下函数 $f(x;\alpha)$ 的图像。

当 α ∈ (0,1] 时,函数 $f(x;\alpha)$ 在参数 α 不同取值下的图像如图 1 所示。

当 α ∈ (1,+∞) 时,函数 $f(x;\alpha)$ 在参数 α 不同取值下的图像如图 2 所示。

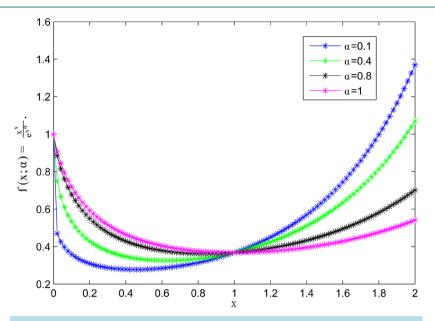


Figure 1. The figure of $f(x;\alpha) = \frac{x^x}{e^{x^{\alpha}}}$ with the parameter $\alpha \in (0,1]$

图 1. $f(x;\alpha) = \frac{x^x}{e^{x^{\alpha}}}$ 在参数 $\alpha \in (0,1]$ 下的图像

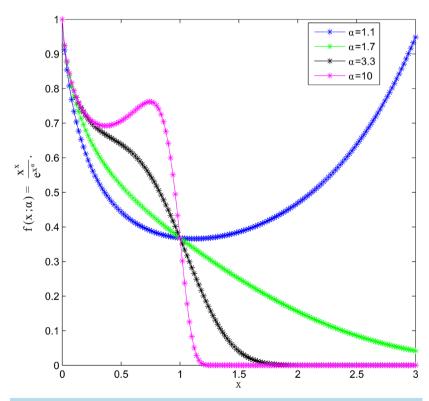


Figure 2. The figure of $f(x;\alpha) = \frac{x^x}{e^{x^{\alpha}}}$ with the parameter $\alpha \in (1,+\infty)$

图 2. $f(x;\alpha) = \frac{x^x}{e^{x^{\alpha}}}$ 在参数 $\alpha \in (1,+\infty)$ 下的图像

4. 小结

本文引入函数 $h(x;\alpha)$ 和 $g(x;\alpha)$,通过考察其性质(引理 1)进而考察函数 $f(x;\alpha)$ 的性质(定理 1、定理 2)。接着考察了函数 $g(x;\alpha)$ 的稳定点 $x_s(\alpha)$ (定理 3),为分类参数 α 的区间进而准确描绘函数 $f(x;\alpha)$ 的图像做了准备。

基金项目

国家自然科学基金资助项目(11461002); 广西高校科学技术研究资助项目(LX2014194); 广西高等教育本科教学改革工程资助项目(2015JGB296); 2015 年本科高校优势特色专业项目——测控技术与物联网工程; 2014年自治区级辅导员精品项目——基于"易班"网络平台,加强班级电子档案建设,促进思想政治教育实效性; 2016年度广西科技大学教育教学改革研究立项项目——职业化视角下思想政治教育融入大学生就业指导的模式研究,地方工科院校《数学分析》课程的教学研究与探索。

参考文献 (References)

- [1] 陈奕俊. WZ 方法与一类由含参变量积分所定义的函数的定积分计算[J]. 华南师范大学学报, 2012, 44(2): 40-45.
- [2] 王明华. 无穷直线上含参变未知函数的 Riemann 边值问题[J]. 西南师范大学学报, 2003, 28(6): 831-834.
- [3] 曹丽霞, 李平润, 孙平. 上半平面中含参变未知函数的 Hilbert 边值问题[J]. 数学的实践与认识, 2012, 42(2): 189-194.
- [4] 梅宏. 一类含参变量积分的常差分方程计算方法[J]. 数学的实践与认识, 2007, 37(9): 184-189.

期刊投稿者将享受如下服务:

- 1. 投稿前咨询服务 (QQ、微信、邮箱皆可)
- 2. 为您匹配最合适的期刊
- 3. 24 小时以内解答您的所有疑问
- 4. 友好的在线投稿界面
- 5. 专业的同行评审
- 6. 知网检索
- 7. 全网络覆盖式推广您的研究

投稿请点击: http://www.hanspub.org/Submission.aspx