Judicious Balanced Bipartitions of (k, k – 1)-Biregular Graphic Degree Sequence

Haiyan Li, Jin Guo

College of Information Science and Technology, Hainan University, Haikou Hainan Email: lihaiyan@hainu.edu.cn

Received: Apr. 11th, 2018; accepted: Apr. 21st, 2018; published: Apr. 28th, 2018

Abstract

Let $\pi = (d_1, d_2, \cdots, d_n)$ be a graphic sequence of nonnegative integers and π_1, π_2 are two sequences that are obtained by partitioning the elements of π into two sets. A balanced bipartition of π is a bipartition π_1, π_2 such that $-1 \le |\pi_1| - |\pi_2| \le 1$, where $|\pi_i| (i = 1, 2)$ is denoted to the number of elements of $|\pi_i|$. In this paper, let k and m be positive integers, we determine the values $\psi_{\max}(\pi)$ and $\psi_{\min}(\pi)$ of (k, k-1)-biregular graphic sequence $\pi = (k^m, (k-1)^m)$.

Keywords

Graph, Degree Sequence, $(k^m,(k-1)^m)$ -Biregular Graphic Sequence, Judicious Balanced Bipartition

(k, k-1)-双正则可图序列的公平划分

李海燕,郭 锦

海南大学信息科学技术学院,海南 海口

Email: lihaiyan@hainu.edu.cn

收稿日期: 2018年4月11日; 录用日期: 2018年4月21日; 发布日期: 2018年4月28日

摘 要

设 $\pi = (d_1, d_2, \cdots, d_n)$ 是非负整数序列, π_1, π_2 是将 π 的所有元素划分为两部分后的两个子序列。如果

文章引用:李海燕,郭锦. (k, k-1)-双正则可图序列的公平划分[J]. 应用数学进展, 2018, 7(4): 423-428. DOI: 10.12677/aam.2018.74053

 $-1 \le |\pi_1| - |\pi_2| \le 1$,则称 π_1, π_2 是 π 的一个平衡二部划分,其中 $|\pi_i| (i = 1, 2)$ 表示 π_i 中的元素数目。设 k 和 m 是两个正整数, $\pi = \left(k^m, (k-1)^m\right)$ 是双正则可图序列。本文确定了 $\psi_{\max}(\pi)$ 的值和 $\psi_{\min}(\pi)$ 的值。

关键词

图,度序列, $(k^m,(k-1)^m)$ -双正则可图序列,公平划分

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

本文中只限于讨论有限简单图。未给出的定义请参照文献[1]。设 G 和 H 是简单图,图 G+H 表示 G 与 H 的和,其顶点集为 $V(G+H)=V(G)\cup V(H)$,其边集为 $E(G+H)=E(G)\cup E(H)$ 。

设 V_1,V_2 是图G的一个二部划分,如果 $-1 \le |V_1| - |V_2| \le 1$,则称 V_1,V_2 是G的一个二部平衡划分。对于i = 1,2, $e(V_i)$ 表示两个端点都在 V_i 中的边的数目, $e(V_1,V_2)$ 表示两个端点分别在顶点子集 V_1,V_2 中的边数。通常 $e(V_1,V_2)$ 用来表示平衡二部划分的大小。图G的一个最大(最小)平衡二部划分 V_1,V_2 是图G的所有平衡二部划分中 $e(V_1,V_2)$ 的值达到最大(最小)。与最大,最小平衡划分问题不同,公平划分问题是寻找图G的一个划分,使得多个分量同时进行优化。

本文将把图的公平划分问题变形到度序列的公平划分问题。

若简单图有顶点集 v_1,v_2,\cdots,v_n 且 v_i 的度为 $d_i(i=1,\cdots,n)$,则序列 $\pi=(d_1,d_2,\cdots,d_n)$ 称为G的度序列。记 NS_n 为所有满足 $n-1\geq d_1\geq d_2\geq \cdots \geq d_n\geq 0$ 的整数序列的集合。如果 π 是某个n 阶简单图G的度序列,那么称 π 为可图序列,且G为 π 的一个实现。记 GS_n 为 NS_n 中的所有可图序列组成的集合。在可图度序列中, r^n 表示有n个r,即度序列的实现中有n个顶点的度为r。

给定可图序列 π , π_1 , π_2 是将 π 的元素划分为两部分后的两个子序列。如果 $-1 \le |\pi_1| - |\pi_2| \le 1$, 则称 π_1 , π_2 是 π 的一个平衡二部划分,其中 $|\pi_i|(i=1,2)$ 表示 π_i 中的元素数目。若 G 是 π 的一个实现, V_1 , V_2 是 G 的一个平衡二部划分且 V_1 , V_2 在 π 中的度序列分别为 π_1 , π_2 ,则称 V_1 , V_2 为 π 的平衡二部划分 π_1 , π_2 的一个实现。

类似于图的"公平"划分问题,我们考虑度序列的"公平"划分问题:寻找已知可图序列 π 的一个平衡二部划分 π_1,π_2 ,使得 π_1,π_2 的某个实现 V_1,V_2 在 π 的所有平衡二部划分的所有实现下 $\min\{e(V_1),e(V_2)\}$ 达到最大或者 $\max\{e(V_1),e(V_2)\}$ 达到最小,记 $\psi_{\min}(\pi)=\min\{e(V_1),e(V_2)\}$, $\psi_{\max}(\pi)=\max\{e(V_1),e(V_2)\}$ 。 若 V_1',V_2' 是 π 的某个平衡二部划分的一个实现,显然 $\psi_{\min}(\pi)\geq\min\{e(V_1'),e(V_2')\}$, $\psi_{\max}(\pi)\leq\max\{e(V_1'),e(V_2')\}$ 。

2. 主要定理及引理

定理 2.1: (Erdös 和 Gallai [2])设 $\pi = (d_1, d_2, \cdots, d_n) \in NS_n$ 且 $\sum_{i=1}^n d_i$ 是偶数。则 $\pi \in GS_n$ 当且仅当对任意整数 t,

$$\sum_{i=1}^t d_i \leq t \left(t-1\right) + \sum_{j=t+1}^n \min\left\{d_i,t\right\}, 1 \leq t \leq n$$

都成立。

设 $\mathbf{P} := (p_1, p_2, \dots, p_m)$, $\mathbf{Q} := (q_1, q_2, \dots, q_n)$ 是两个非负整数序列。如果存在一个简单二部图 G[X, Y] 使得 X 和 Y 中的项点度分别是 (p_1, p_2, \dots, p_m) 和 (q_1, q_2, \dots, q_n) ,那么称序列对 (\mathbf{P}, \mathbf{Q}) 是二部可图的,并称二部图 G[X, Y] 为 (\mathbf{P}, \mathbf{Q}) 的一个实现。Gale [3]和 Ryser [4] 分别独立地给出了关于二部可图序列的刻划定理。

定理 2.2: (Gale [3], Ryser [4]) 设 $\mathbf{P} \coloneqq (p_1, p_2, \dots, p_m)$ 和 $\mathbf{Q} \coloneqq (q_1, q_2, \dots, q_n)$ 是两个非负整数序列且满足 $p_1 \ge p_2 \ge \dots \ge p_m$, $q_1 \ge q_2 \ge \dots \ge q_n$ 。若 $\sum_{i=1}^m p_i = \sum_{i=1}^n q_i$,则 (\mathbf{P}, \mathbf{Q}) 是二部可图的当且仅当

$$\sum_{i=1}^{t} q_i \le \sum_{i=1}^{m} \min \left\{ p_i, t \right\} \left(1 \le t \le n \right)$$

成立。

引理 2.3: (Yin 和 Li [5])设 $\pi = (d_1, d_2, \dots, d_n) \in NS_n$, $d_1 = r \perp \sum_{i=1}^n d_i$ 是偶数。如果 $d_{r+1} \geq r-1$,则 $\pi \in GS_n$ 。设 $\pi = (d_1, d_2, \dots, d_n) \in GS_n$, 若 $d_1 = k, d_n = k-1$,则称 $\pi \neq (k, k-1)$ -双正则可图的。本文主要给出双正则可图序列 $\left(k^m, (k-1)^m\right)$ 的公平划分的上下界。

3. (k, k-1)-双正则可图序列的公平划分 $\psi_{\max}(\pi)$ 的上界

定理 3.1: 设 $k \ge 1$ 是一个正整数,m 是 4 的整数倍且 $\pi = (k^m, (k-1)^m) \in GS_n$ 。那么

1) 若 $k \le m$, 则 $\psi_{\text{max}}(\pi) = 0$;

证明: 情形(1): $k \le m$.

设 $\pi_1 = (p_1, \dots, p_m) = \left(k^{\frac{m}{2}}, (k-1)^{\frac{m}{2}}\right), \quad \pi_2 = (q_1, \dots, q_m) = \left(k^{\frac{m}{2}}, (k-1)^{\frac{m}{2}}\right), \quad \text{那么} \ \pi_1, \pi_2 \in \pi \text{ 的一个平衡二部}$

划分。这里,

$$\sum_{j=1}^{t} q_{j} = \begin{cases} kt, & -\frac{m}{2} \leq t \leq \frac{m}{2} \\ k \cdot \frac{m}{2} + (k-1)\left(t - \frac{m}{2}\right), & -\frac{m}{2} \leq t \leq m \end{cases}$$

$$(1)$$

且

$$\sum_{i=1}^{m} \min \{ p_i, t \} = \begin{cases} mt, & -1 \\ k \cdot \frac{m}{2} + (k-1) \cdot \frac{m}{2}, & -1 < t \le m \end{cases}$$
 (2)

接下来我们比较 $\sum_{j=1}^t q_j$ 和 $\sum_{i=1}^m \min\{p_i,t\}$ 的大小。显然,由(1)和(2)得 $kt \leq mt$ 且

$$k \cdot \frac{m}{2} + \left(k - 1\right) \left(t - \frac{m}{2}\right) \le k \cdot \frac{m}{2} + \left(k - 1\right) \cdot \frac{m}{2}$$

若 $\frac{m}{2}$ <k-1, $\frac{m}{2}$ < $t \le k-1$,由(1)和(2)得,

$$\sum_{j=1}^{t} q_{j} = k \cdot \frac{m}{2} + (k-1)\left(t - \frac{m}{2}\right) = \frac{m}{2} + (k-1)t;$$

$$\sum_{j=1}^{m} \min\{p_{j}, t\} = mt.$$

据 $k \le m$ 和 $\frac{m}{2} < t \le k - 1$ 可得

$$\sum_{j=1}^{t} q_{j} - \sum_{i=1}^{m} \min \left\{ p_{i}, t \right\} = \left(k - m \right) t + \left(\frac{m}{2} - t \right) < 0 .$$

若
$$k-1 < \frac{m}{2}, k-1 < t \le \frac{m}{2}$$
,由(1)和(2)得, $\sum_{j=1}^{t} q_j = kt$;

$$\sum_{i=1}^{m} \min \left\{ p_i, t \right\} = k \cdot \frac{m}{2} + \left(k - 1 \right) \cdot \frac{m}{2}$$

显然,

$$\begin{split} &\sum_{j=1}^{t} q_{j} - \sum_{i=1}^{m} \min \left\{ p_{i}, t \right\} \\ &= k \cdot \left(t - \frac{m}{2} \right) - \left(k - 1 \right) \cdot \frac{m}{2} \le 0 \end{split}$$

由定理 2.2, (π_1, π_2) 是二部可图的。设 $G[V_1, V_2]$ 是 (π_1, π_2) 的一个实现,则 G 也是 $\pi = (k^m, (k-1)^m)$ 的一个实现且 V_1, V_2 是 G 的一个平衡二部划分。因此, $\max\{e(V_1), e(V_2)\} = 0$ 。

故,
$$0 \le \psi_{\max}(\pi) \le \max\{e(V_1), e(V_2)\} = 0$$
,且 $\psi_{\max}(\pi) = 0$ 。

情形(2): $m+1 < k \le 2m-1$ 。

设
$$\pi_1' = \left((k-m)^{\frac{m}{2}}, (k-1-m)^{\frac{m}{2}} \right)$$
, $\pi_2' = \left((k-m)^{\frac{m}{2}}, (k-1-m)^{\frac{m}{2}} \right)$ 。由于 $\frac{m}{2}$ 是偶数,所以 π_1', π_2' 的度和

 $(2k-1-2m)\cdot \frac{m}{2}$ 为偶数。由引理 2.3 知, $\pi_i' \in GS_n, i=1,2$ 。设 G_i 是 π_i' 的一个实现且 $V(G_i) = V_i$ (i=1,2),

$$H[V_1,V_2]=K_{m,m}$$
。 令 $G=H+G_1+G_2$ 。 容易验证 G 是 π 的一个实现,且

$$\psi_{\max}(\pi) \le \max\{e(V_1), e(V_2)\} = e(V_1) = e(V_2) = \frac{(2k-1-2m)m}{4}$$

证毕。

4. (k, k-1)-双正则可图序列的公平划分 $\psi_{\min}(\pi)$ 的下界

定理 4.1: 设 $k \ge 1$ 是一个正整数,m 是 4 的整数倍且 $\pi = (k^m, (k-1)^m) \in GS_n$ 。那么

2)
$$\pm m \le k \le 2m-1$$
, $\mu \psi_{\min}(\pi) = \frac{m(m-1)}{2}$.

证明: 情形(1): k < m。

设
$$\pi_1 = \left(k^{\frac{m}{2}}, (k-1)^{\frac{m}{2}}\right)$$
, $\pi_2 = \left(k^{\frac{m}{2}}, (k-1)^{\frac{m}{2}}\right)$,则 π_1, π_2 是 π 的一个平衡二部划分。由于 $\frac{m}{2}$ 是偶数,所

以 π_1, π_2 的度和 $(2k-1) \cdot \frac{m}{2}$ 为偶数。又由引理 2.3 可得, $\pi_1, \pi_2 \in GS_n$ 。设 G_i 是 π_i 的一个实现且 $V(G_i) = V_i (i=1,2)$,令 $G = G_1 + G_2$ 。容易验证 G 是 π 的一个实现, V_1, V_2 是 G 的一个平衡二部划分且

$$\psi_{\min}(\pi) \ge \min\{e(V_1), e(V_2)\} = e(V_1) = \frac{(2k-1)m}{4}$$

情形(2):
$$m \le k \le 2m-1$$
。 显然 $\psi_{\min}(\pi) \le \frac{m(m-1)}{2}$ 。

设
$$\pi'_1 = (p_1, \dots, p_m) = \left((k - m + 1)^{\frac{m}{2}}, (k - m)^{\frac{m}{2}} \right), \quad \pi'_2 = (q_1, \dots, q_m) = \left((k - m + 1)^{\frac{m}{2}}, (k - m)^{\frac{m}{2}} \right).$$
 这里,

且

$$\sum_{i=1}^{m} \min \left\{ p_i, t \right\} = \begin{cases} mt, & \stackrel{\text{\frac{1}}}{\angle 1} \le t \le k - m \\ \left(k - m + 1 \right) \cdot \frac{m}{2} + \left(k - m \right) \cdot \frac{m}{2}, & \stackrel{\text{\frac{1}}}{\angle 1} k - m < t \le m \end{cases} \tag{4}$$

接下来我们比较 $\sum_{j=1}^t q_j$ 和 $\sum_{i=1}^m \min\{p_i,t\}$ 的大小。显然,由(3)和(4)得 $(k-m+1)t \le mt$ 且

$$(k-m+1)\cdot\frac{m}{2}+(k-m)\left(t-\frac{m}{2}\right)\leq (k-m+1)\cdot\frac{m}{2}+(k-m)\cdot\frac{m}{2}$$

若 $\frac{m}{2}$ < $k-m,\frac{m}{2}$ < $t \le k-m$, 由(3)和(4)得,

$$\sum_{j=1}^{t} q_j = \left(k - m + 1\right) \cdot \frac{m}{2} + \left(k - m\right) \left(t - \frac{m}{2}\right) = \frac{m}{2} + \left(k - m\right)t;$$

$$\sum_{j=1}^{m} \min\left\{p_j, t\right\} = mt \circ$$

据 $m \le k \le 2m-1$ 和 $\frac{m}{2} < t \le k-m$ 可知

$$\sum_{j=1}^{t} q_j - \sum_{i=1}^{m} \min \{ p_i, t \} = \frac{m}{2} + (k - m)t - mt$$

$$< t + (k - m)t - mt$$

$$= (k + 1 - 2m)t \le 0$$

若 $k-m < \frac{m}{2}, k-m < t \le \frac{m}{2}$, 由(3)和(4)得, $\sum_{j=1}^{t} q_j = (k-m+1)t$;

$$\sum_{i=1}^{m} \min \left\{ p_i, t \right\} = \left(k - m + 1 \right) \cdot \frac{m}{2} + \left(k - m \right) \cdot \frac{m}{2}$$

显然,

$$\sum_{i=1}^{t} q_{i} - \sum_{i=1}^{m} \min \left\{ p_{i}, t \right\} = \left(k - m + 1 \right) \cdot \left(t - \frac{m}{2} \right) - \left(k - m \right) \cdot \frac{m}{2} \le 0$$

由定理 2.2, (π'_1, π'_2) 是二部可图的。设 $G'[V_1, V_2]$ 是 (π'_1, π'_2) 的一个实现, $G_i = K_m$ 且 $V(G_i) = V_i$ (i = 1, 2)。令 $G = G' + G_1 + G_2$,则 G 是 $\pi = \left(k^m, (k-1)^m\right)$ 的一个实现且 V_1, V_2 是 G 的一个平衡二部划分。故, $\min\left\{e(V_1), e(V_2)\right\} = \frac{m(m-1)}{2}$ 。

因此,
$$\frac{m(m-1)}{2} \ge \psi_{\min}(\pi) \ge \min\{e(V_1), e(V_2)\} = \frac{m(m-1)}{2}$$
, $\psi_{\min}(\pi) = \frac{m(m-1)}{2}$ 。 证毕。

基金项目

海南省自然科学基金(No. 20161003, 20161002); 国家自然科学基金(No. 11601108)。

参考文献

- [1] Bondy, J.A. and Murty, U.S.R. (1976) Graphy Theory with Applications. Macmillan Ltd Press, New York. https://doi.org/10.1007/978-1-349-03521-2
- [2] Erdös, P. and Gallai, T. (1960) Graphs with Prescribed Degrees of Vertices. Matematikai Lapok, 11, 264-274.
- [3] Gale, D. (1957) A Theorem on Flows in Networks. Pacific Journal of Mathematics, 7, 1073-1082. https://doi.org/10.2140/pjm.1957.7.1073
- [4] Ryser, H.J. (1957) Combinatorial Properties of Matrices of Zeros and Ones. *Canadian Journal of Mathematics*, 9, 371-377. https://doi.org/10.4153/CJM-1957-044-3
- [5] Yin, J.H. and Li, J.S. (2005) Two Sufficient Conditions for a Graphic Sequence to Have a Realization with Prescribed Clique Size. *Discrete Mathematics*, **301**, 218-227. https://doi.org/10.1016/j.disc.2005.03.028

知网检索的两种方式:

1. 打开知网页面 http://kns.cnki.net/kns/brief/result.aspx?dbPrefix=WWJD 下拉列表框选择: [ISSN], 输入期刊 ISSN: 2324-7991, 即可查询

2. 打开知网首页 <u>http://cnki.net/</u>

左侧"国际文献总库"进入,输入文章标题,即可查询

投稿请点击: http://www.hanspub.org/Submission.aspx

期刊邮箱: aam@hanspub.org