Magnetic Properties of Low Temperature Nanoring

Xinyuan Zhang, Yajing Wang, Qiuyi Huang, Jieyu Liu, Wenxiang Wang, Qingying Ye*

College of Physics and Energy, Fujian Normal University, Fuzhou Fujian Email: 'qyye@fjnu.edu.cn

Received: Feb. 17th, 2020; accepted: Mar. 3rd, 2020; published: Mar. 10th, 2020

Abstract

Base on Monte Carlo method, the magnetic properties of the nanorings at system temperature of 100 K are studied. It is found that the systems still remain bistable states at low temperature; that is, there are "onion-type-states" and "vortex-type-states". However, the coercivity of low temperature nanorings is higher than that of normal temperature nanorings. The spin configurations of the system clearly show the magnetization process of the system.

Keywords

Low Temperature, Nanoring, Hysteresis Loop, Coercivity, Spin Configuration

低温纳米环磁特性研究

张鑫源,王雅静,黄秋怡,刘婕妤,王文祥,叶晴莹*

福建师范大学,物理与能源学院,福建 福州 Email: ^{*}qyye@fjnu.edu.cn

收稿日期: 2020年2月17日; 录用日期: 2020年3月3日; 发布日期: 2020年3月10日

摘要

采用Monte Carlo (蒙特卡罗)方法研究了体系温度为100 K时纳米环的磁特性。研究发现,低温下系统依 然保持"双稳态"特征,即存在"洋葱态"和"涡旋态"。但低温纳米环的矫顽力比常温纳米环的矫顽 力大。系统的自旋组态可以清晰的展示出系统的磁化过程。

*通讯作者。

文章引用: 张鑫源, 王雅静, 黄秋怡, 刘婕妤, 王文祥, 叶晴莹. 低温纳米环磁特性研究[J]. 应用物理, 2020, 10(3): 186-190. DOI: 10.12677/app.2020.103023

关键词

低温,纳米环,磁滞回线,矫顽力,自旋组态

Copyright © 2020 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

1. 引言

磁性材料具有丰富的物理特性,是当今学界的研究热点[1] [2] [3]。在多种多样的磁性材料中,磁性 纳米环是一种具有独特物理性质的环状材料。在外场作用下,纳米环能够呈现出"涡旋态"和"洋葱态", 这使纳米环在磁存储、磁传感等领域具有巨大的应用潜力[4] [5] [6]。科研人员 Kläui 研究了磁性纳米环 的畴壁反转过程,证实可用脉冲控制纳米环的畴壁反转[7],Singh 采用微磁学方法模拟了纳米环畴壁的 产生与湮灭的过程,得到了纳米环组态与几何形状密切相关的结论[8]。这些研究使人们逐渐认识了纳米 环的在外场作用下的微观机制。在实验研究中,Liang 发现,金属纳米环阵列可以为各种尺寸的生物分子 提供一种高性能传感平台[6]。而在复合纳米环的研究过程中,科研人员也发现,若在碳纳米管中放置 Co/Pt 复合纳米环,系统的矫顽力将大于单纯的 Co/Pt 薄膜,磁测量发现系统的磁滞回线为典型的台阶状,且 与理论结果符合良好[9]。这些研究使纳米环的应用逐渐趋于现实。本课题组在前期工作中也对纳米环的 磁化动力学行为经行了多维度的研究。研究中发现,磁性纳米环的内径、外径、缺陷位置、缺陷大小等 都对纳米环的磁特性产生明显影响[10] [11] [12] [13]。

虽然对科研人员已经对磁性纳米环进行了较为深入的研究,但研究中却较少涉及低温下纳米环的磁 特性。因此,本文从低温条件入手,研究低温下铁纳米环的磁特性。

2. 模型与方法

图 1 为铁纳米环的模型,其中 R 为纳米环的外半径(设 R = 100 nm), r 为纳米环的内半径。模拟中采 用有限元算法:将系统经行划分,每个划分的单元为球状,直径约 10 nm [14]。Heisenberg 模型中体系的 哈密顿量表示如下式:

$$E = -\sum_{ij} JS_i \cdot S_j + D\sum_{ij} \left[\frac{S_i \cdot S_j}{r_{ij}^3} - 3 \frac{(S_i \cdot r_{ij})(S_j \cdot r_{ij})}{r_{ij}^5} \right] - Kv_0 \sum_i (S_i \cdot u_i)^2 - M_s v_0 H \sum_i S_i \cdot h$$
(1)

Figure 1. The model of nanoring 图 1. 纳米环模型

(1) 式中第一项为交换能,第二项为偶极能,第三项为各向异性能,第四项为塞曼能,各项的计算参数与文献[11]相符。在模拟中,令外磁场正方向水平向右,设定温度为100K。

在计算中采用 Monte Carlo (蒙特卡罗)方法计算系统的能量[14] [15],该方法简述如下:

1. 根据(1)式可以算出体系能量,设初始位形为W₀,其相应体系能量为E₀;

2. 构建 Markov 过程[16],采用伪随机数产生新的随机位形,若以 W_x 代表新产生的位形(其中 x > 0), 重新计算能量 E_x ;

3. 比较能量 $E_x = E_{x-1}$ 。如果 $E_x > E_{x-1}$,则说明原位形条件下的能量高于最新产生的位形的能量,采 用能量最低原理,可判断出新产生的位形条件下的体系更为稳定。因此,在 Monte Carlo 模拟保留新产生 的位形。反之,若 $E_x < E_{x-1}$,为了防止体系能量陷入局域极小之中,则需采用 Metropolis 准则[16]进行位 形保留。对于含有多个自旋构成的系统,一次 Monte Carlo 步的完成代表体系中所有自旋都获得一次位形。

系统的平衡状态需要进行大量的 MonteCarlo 步模拟计算,本研究采用两万 Monte Carlo 步以获得系统的平衡态。

3. 结果与讨论

图 2 中展示的是内半径 r 不同的纳米环的磁滞回线,其中图 2(a)中 r = 30 nm,图 2(b)中 r = 70 nm。 从图 2 中可以看到,不同内半径的纳米环在低温下的磁滞回线都呈现出典型的"双稳态"特征:高场区 的近饱和态台阶和低场区台阶[16]。从图中还可以发现,r = 70 nm的铁纳米环在"双稳态"之间的过渡 态少于 r = 30 nm 的铁纳米环。以上特征与常温下铁纳米环类似[16],并符合纳米材料在低温下的特征[17]。

常温下上述几何条件的铁纳米环的矫顽力都接近零[16],但从图 2 中可以发现,低温条件下,铁纳米 环的矫顽力明显大于零,即低温铁纳米环的矫顽力大于常温铁纳米环的矫顽力。这与纳米材料的特性是 一致的[17]。

为了研究纳米环在低温下的磁化行为,我们模拟了图 2(b)从-2000 Oe 到 2000 Oe 过程中铁纳米环的 主要自旋组态,如图 3 所示。

Figure 2. The hysteresis loops of Fe nanorings with different inner radius (R = 100 nm, T = 100 K) **图 2.** R = 100 nm, T = 100 K 时不同内半径铁纳米环的磁滞回线

从图 2 和图 3 中可以看到,当外场 H = -2000 Oe 时(如图 2(b)中的"1"点位置),纳米环处于"洋葱态"(如图 3(a)所示),此时外场较大,系统处于近饱态,因此这是一个极化状态。减小外场,这个状态几乎保持不变,直至外场减小至零,并反向增加到 700 Oe 时,系统依然呈现类似组态——从图 2(b)的磁滞回线看,这一过程中系统的磁滞回线处于同一台阶[16]。而后,当 H = 800 Oe 时,系统的磁化强度迅速

减小(如图 2(b)中的"2"点所示),其对应自旋组态为图 3(b),这是一个典型的"涡旋态"。这一涡旋状态将一直保持至 H = 1100 Oe——从图 2(b)的磁滞回线中可以发现,这一过程系统的磁滞回线再次处于同一台阶[16]。而后外场继续增大,当外场 H = 1200 Oe 时(如图 2(b)中的"3"点位置),系统的自旋组态又产生的新的变化(如图 3(c)):在系统的上方出现了三个"局部涡旋态",其中左右两个局部涡旋为逆时针涡旋,中间的局部涡旋为顺时针涡旋。产生这一现象的主要原因是系统的交换能、偶极能、各向异性能和塞曼能综合竞争的结果,文献[10][13]对类似现象有详细解释。当外场增加为 H = 1400 Oe 时(如图 2(b)中的"4"点位置),系统上方的左右两个逆时针涡旋逐渐下移,而中间的顺时针涡旋面积增大,并下移(如图 3(d))。这种畴壁的移动结果是使系统上方向左的自旋减少,而向右的自旋增加,此时系统除局部涡旋位置外,已接近"洋葱态"(如图 3(d))。图 3(c)和图 3(d)为系统在"双稳态"之间过渡状态。继续增大外场,塞曼能在系统中逐渐起到主导作用,于是系统出现了典型的"洋葱态"(如图 3(e))。可以发现,由于图 3(a)与图 3(e)的外场方向相反,以此这两张图中的"洋葱态"方向也是相反的。

Figure 3. Typical spin configurations of Fe nanoring with R = 100 nm, r = 70 nm, T = 100 K 图 3. R = 100 nm, r = 70 nm, T = 100 K 铁纳米环的自旋组态

4. 结论

通过 Monte Carlo 方法模拟计算了铁纳米环在 100 K 条件下系统的磁滞回线与自旋组态。从研究中可 以发现,低温下铁纳米环依然可以呈现"双稳态",但低温时系统的矫顽力更大。从组态的模拟可以看 出,系统呈现出正反两个方向的"洋葱态",并出现典型的"涡旋态"和过渡状态: "局部涡旋态"。 磁滞回线中出现的状态都可用自旋组态解释。

基金项目

福建省自然科学基金(2017J01553),福建省本科高校教育教学改革研究项目(FBJG20180259),福建师范大学本科教学改革研究项目(I201803032),大学生创新创业训练计划项目(201910394013, cxxl-2019127, cxxl-2019s62)资助项目。

参考文献

- Li, H., Cao, Z., Lin, J., Zhao, H., Jiang, Q., Jiang, Z., Liao, H., Kuang, Q. and Xie, Z. (2018) Synthesis of u-Channelled Spherical Fe_x(CoyNi_{1-y})100^{-x} Janus Colloidal Particles with Excellent Electromagnetic Wave Absorption Performance. *Nanoscale*, **10**, 1930-1938. <u>https://doi.org/10.1039/C7NR06956A</u>
- [2] Kong, X.Y., Ding, Y., Yang, R. and Wang, Z.L. (2004) Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. *Science*, **303**, 1348-1351. <u>https://doi.org/10.1126/science.1092356</u>
- [3] Wang, Y., Zhou, K., Huang, G., Hensley, C., Huang, X., Ma, X., Zhao, T., Sumer, B.D., DeBerardinis, R.J. and Gao, J. (2014) A Nanoparticle-Based Strategy for the Imaging of a Broad Range of Tumours by Nonlinear Amplification of Microenvironment Signals. *Nature Materials*, 13, 204 -212. <u>https://doi.org/10.1038/nmat3819</u>
- [4] Kläui, M., Vaz, C.A.F., Rothman, J., Bland, J.A.C., Wernsdorfer, W., Faini, G. and Cambril, E. (2003) Structures Probed by Magnetoresistance Measurements. *Physical Review Letters*, **90**, Article ID: 097202. https://doi.org/10.1103/PhysRevLett.90.097202
- [5] 叶晴莹, 王文静, 邓楚楚, 陈水源, 张鑫源, 王雅婧, 黄秋怡, 黄志高. 缺陷铁纳米环体系的磁特性研究[J]. 物理 学报, 2019, 68(10): 107502.
- [6] Liang, Y., Li, L., Lu, M., Yuan, H., Long, Z., Peng, W. and Xu, T. (2018) Comparative Investigation of Sensing Behaviors between Gap and Lattice Plasmon Modes in Metallic Nanoring Array. *Nanoscale*, 10, 548-555. <u>https://doi.org/10.1039/C7NR07124H</u>
- Kläui, M., Vaz, C.A.F., Bland, J.A.C., Wernsdorfer, W., Faini, G. and Cambril, E. (2005) Controlled and Reproducible Domain Wall Displacement by Current Pulses Injected into Ferromagnetic Ring Structures. *Physical Review Letters*, 94, Article ID: 106601. <u>https://doi.org/10.1103/PhysRevLett.94.106601</u>
- [8] Singh, N., Goolaup, S., Tan, W., Adeyeye, A.O. and Balasubramaniam, N. (2007) Micromagnetics of Derivative Ring-Shaped Nanomagnets. *Physical Review B*, 75, Article ID: 104407. <u>https://doi.org/10.1103/PhysRevB.75.104407</u>
- [9] Yoon, S., Lee, S.H., Kwak, W., Nam, C., Kim, W.B. and Cho, B.K. (2014) Magnetic Properties of Co/Pt Nanoring Arrays Deposited on Carbon Nanotubes. *Journal of Applied Physics*, 115, 17B511. <u>https://doi.org/10.1063/1.4864137</u>
- [10] Ye, Q., Chen, S., Liu, J., Huang, C., Huang, S. and Huang, Z. (2016) Study of Magnetic Properties for Co Double-Nanorings: Monte Carlo Simulation. *Journal of Magnetism and Magnetic Materials*, 408, 1-6. <u>https://doi.org/10.1016/j.jmmm.2016.01.089</u>
- [11] 刘劲尧, 黄盛凯, 许燕婷, 庄定国, 吴金铃, 叶晴莹, 黄志高. 缺陷钴纳米环磁化动力学研究[J]. 应用物理, 2015, 6(5): 100-105.
- [12] 黄盛凯, 陈水源, 吴金铃, 徐菊艳, 王文静, 张裕祥, 叶晴莹, 冯倩, 黄志高. 缺损钴纳米环磁特性模拟研究[J]. 福建师范大学学报(自然科学版), 2018, 1(34): 51-53.
- [13] Ye, Q., Chen, S., Huang, S., Wu, J., Xu, J., Wang, W., Fan, W. and Huang, Z. (2019) Magnetic Dynamic Properties of Defective Cobalt Nanorings: Monte Carlo Simulation. *Journal of Magnetism and Magnetic Materials*, 473, 301-305. <u>https://doi.org/10.1016/j.jmmm.2018.10.038</u>
- [14] Huang, Z., Chen, Z., Zhang, F. and Du, Y. (2004) Magnetization and Configurational Anisotropy in Magnetic Clusters: Monte Carlo Simulation. *European Physical Journal B*, 37, 177-185. <u>https://doi.org/10.1140/epib/e2004-00044-x</u>
- [15] Huang, Z., Chen, Z., Li, S., Feng, Q., Zhang, F. and Du, Y. (2006) Effects of Size and Surface Anisotropy on Thermal Magnetization and Hysteresis in the Magnetic Clusters. *European Physical Journal B*, **51**, 65-76. https://doi.org/10.1140/epib/e2006-00188-7
- [16] 林枝钦. 纳米环的磁特性的数值计算[D]: [硕士学位论文]. 福州: 福建师范大学, 2009.
- [17] 叶晴莹. 量子点磁化动力学行为的研究[D]: [硕士学位论文]. 福州: 福建师范大学, 2007.