稀土Ce对ADC12铝合金铸态微观组织与性能的 影响

黄正华1.2*,赵 虎1.2,康跃华1.2,宋东福1.2,乡家发3

¹广东省科学院材料与加工研究所,广东省金属强韧化技术与应用重点实验室,广东 广州 ²广东省科学院材料与加工研究所,粤港轻合金先进制造技术联合研发中心,广东 广州 ³肇庆南都再生铝业有限公司,广东 肇庆 Email: zhhuang@gimp.gd.cn

收稿日期: 2020年10月5日; 录用日期: 2020年10月20日; 发布日期: 2020年10月27日

摘要

采用重力铸造制备了ADC12-xCe (x = 0~1.92)合金铸态试样,利用光学显微镜(OM)、扫描电子显微镜 (SEM)和X射线衍射仪(XRD)分析了其微观组织和相组成,测试了其流动性能和室温拉伸力学性能。结果 表明,ADC12合金中添加Ce后,铸态组织得到明显细化,初生α-Al从粗大的树枝晶转变为细小的等轴晶 和胞状晶,针状的共晶硅转变为细小的颗粒状,同时析出丝状和条状的新相Al4Ce,大多数第二相趋于以 条状和纤维状存在。随着Ce含量的增加,铸态综合性能先提高后降低。ADC12合金流动长度、抗拉强度 和伸长率分别为1287 mm、188 MPa和1.5%,流动性能最佳的ADC12-0.66Ce合金流动长度达到1340 mm,拉伸力学性能最佳的ADC12-1.07Ce合金抗拉强度和伸长率分别提高至196 MPa和2.5%。

关键词

铸造铝合金,Ce变质,微观组织,性能

Effect of Rare Earth Ce on As-Cast Microstructure and Properties of ADC12 Aluminum Alloy

Zhenghua Huang^{1,2*}, Hu Zhao^{1,2}, Yuehua Kang^{1,2}, Dongfu Song^{1,2}, Jiafa Xiang³

¹Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou Guangdong

²Guangdong-Hong Kong Joint Research and Development Center on Advanced Manufacturing Technology for Light Alloys, Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou Guangdong

*通讯作者。

文章引用:黄正华,赵虎,康跃华,宋东福,乡家发.稀土 Ce对 ADC12 铝合金铸态微观组织与性能的影响[J].材料科学,2020,10(10):799-805.DOI:10.12677/ms.2020.1010095

³Zhaoqing Nandu Recycling Aluminum Co., Ltd., Zhaoqing Guangdong Email: ^{*}zhhuang@gimp.gd.cn

Received: Oct. 5th, 2020; accepted: Oct. 20th, 2020; published: Oct. 27th, 2020

Abstract

As-cast ADC12-*x*Ce (x = 0 - 1.92) alloy samples were prepared by gravity casting. The microstructures and phase compositions were studied by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Meanwhile, the flow property and tensile mechanical properties at ambient temperature were tested. The results show that as-cast microstructure is refined significantly when Ce is added into ADC12 alloy. Primary α -Al changes from the coarse dendrites to fine equixed and cellular grains, and eutectic silicon does from acicular to fibrous or granular shapes. Meanwhile, the filamentous and strip new phase Al₄Ce is precipitated. Most of second phases tend to exist in the form of strip and fiber. With increasing the Ce content, as-cast comprehensive properties are first enhanced, and then reduced. The flow length, tensile strength and elongation of ADC12 alloy are 1287 mm, 188 MPa and 1.5%, respectively. The flow length of ADC12-0.66Ce alloy with best flow performance reaches 1340 mm. The tensile strength and elongation of ADC12-1.07Ce alloy with best tensile mechanical properties increase up to 196 MPa and 2.5%, respectively.

Keywords

Cast Aluminum Alloy, Ce Modification, Microstructure, Properties

Copyright © 2020 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

1. 引言

Al-Si-Cu 系铝合金呈现低的密度、良好的流动性能、热稳定性能和耐磨性能等优点,常作为铸造铝 合金广泛应用于汽车、轮船、军工等领域[1] [2] [3] [4] [5]。但是,该系合金主要问题是强度相对较低和 塑性较差,特别是室温伸长率通常不超过 2%,不能满足更广阔的应用需求,因此有必要通过合金化或改 进制备工艺等手段来提高其强度和塑性。国内外研究人员已通过添加 La [6] [7] [8] [9]、Sm [10] [11]、Y [12] [13]等稀土 RE 来细化 Al-Si-Cu 系合金的组织、改善初生 Si 相的有害形貌和析出强化的新相,同时净化 合金熔体,从而提高室温和高温拉伸力学性能等。与上述 RE 相比,Ce 储量丰富,价格便宜,但迄今为 止还没有研究人员开展含 Ce 的 ADC12 合金组织与性能的研究。为此,本文采用重力铸造制备添加 0~1.92% Ce 的 ADC12 合金的铸态力学性能试样和流动性能试样,详细考察其微观组织与性能,确定 Ce 的合适添 加量,从而指导低成本高强韧、高流动性压铸铝合金的开发。

2. 实验方法

ADC12-xCe 合金锭由工业 ADC12 合金锭(具体成分见表 1)和 Al-30%Ce (本文除特别指出外,均为质量百分比,wt%)中间合金熔炼而成。首先,将 ADC12 合金锭放入井式加热电阻炉的石墨坩埚中升温,待全部熔化后,加入称量好的 Al-30%Ce 中间合金,升温至 1013 K,在1 h 内搅拌 2 次,以保证熔体成

分均匀性。然后,用钟罩将精炼剂和除气剂压入熔体底部上下搅动,进行扒渣和精炼,重复3次。接着升温至1033 K 静置20 min,停止加热,待熔体冷却至953 K 时,扒渣后分别浇注至预热温度为523 K 的 金属型楔形模具和螺旋形流动性模具,从而获得重力铸造铸态力学性能试样和流动性能试样。

 Table 1. Composition of industrial ADC12 alloy ingot (weight percent, wt%)

 表 1. 工业 ADC12 合金锭的成分(质量百分比, wt%)

Element	Si	Cu	Fe	Zn	Mn	Ni	Mg	Sn	Al
Nominal	9.6~12.0	1.5~3.5	≤1.3	≤1.0	≤0.5	≤0.5	≤0.3	≤0.3	Bal.
Measured	10.36	1.68	0.92	0.612	0.166	0.074	0.164	0.001	Bal.

重力铸造获得的 ADC12-*x*Ce 合金铸态力学性能试样经等离子体原子发射光谱仪(ICP, JY Ultima2)测得的 Ce 含量分别为 0.66%、1.07%和 1.92%。在铸态力学性能试样相同位置切取金相试样,经不同型号砂纸磨光和抛光布精抛后,用 4 vol.%硝酸酒精腐蚀剂腐蚀数秒;接着在光学显微镜(OM, Leica DMI 3000M)和带有能谱仪(EDS, FEI Quanta 200)的扫描电子显微镜(SEM, MLA 200)上分析铸态微观组织。铸态试样的相组成在 X 射线衍射仪(XRD, SmartLab)上进行分析。加工好的小型拉伸试样在 DNS200 型 万能材料拉伸试验机上进行室温拉伸,应变速率为 1.3 × 10⁻³ s⁻¹。用尺子测量流动性能试样的长度,来表征不同成分合金的流动性能。

3. 结果与讨论

3.1. 铸态组织

重力铸造制备的 ADC12 合金铸态组织主要由 α-Al 基体、黑色长针状或板条状相、浅灰色无规则相 组成,板条状和骨骼状第二相分布杂乱。添加 0.66% Ce 后,铸态组织中枝晶粗大,粗大的针状共晶硅非 均匀分布于晶界。添加 1.07% Ce 后,铸态组织中枝晶有所破碎,共晶硅尺寸减小,形状呈蜘蛛网状,第 二相 Al-Si-Fe 为细长状穿插于共晶硅之间。添加 1.92% Ce 后,铸态组织中第二相不均匀分布于基体上, 形状为片状、板条状,棱角明显,组织粗大,部分共晶硅被细化(见图 1)。

图 2 为铸态 ADC12-xCe 合金的 SEM 微观组织,表 2 列出了图 2 中各点对应的 EDS 分析结果。重力 铸造获得的 ADC12 合金铸态组织由黑色α-Al 基体(见图 2(a)中 4#)、浅灰色无规则相(见图 2(a)中 1#)、浅 灰色块状相(见图 2(a)中 2#)和深黑色板条状相(见图 2(a)中 3#)组成。添加 Ce 后,除存在上述相以外,还 出现以丝状和条状存在的亮白色稀土相(见图 2(a)中 9#)、且随着 Ce 含量的增加而逐渐增多。添加 0.66% 后,铸态组织中白色稀土相大多数为点状,只存在极少数条状;添加 1.07% Ce 后,稀土相出现条状,且 增多,存在于基体上,灰色点状相也有所增加;当 Ce 含量增加到 1.92%时,大多数稀土相和非稀土相均 以条状和纤维状存在。

Figure 1. OM microstructures of as-cast ADC12-xCe alloys. The illustrations in the lower left corner are the OM microstructures with greater magnification

Figure 2. SEM microstructures of as-cast ADC12-xCe alloys 图 2. 铸态 ADC12-xCe 合金的 SEM 微观组织

Table 2. EDS results of each points in SEM microstructures of as-cast ADC12-*x*Ce alloys (atomic percent, at.%) 表 2. 铸态 ADC12-*x*Ce 合金 SEM 微观组织中各点对应的 EDS 结果(原子百分比, at.%)

Alloy	Position	Al	Si	Cu	Fe	Mn	Ni	Ce
	1	71.75	11.85	1.42	12.03	2.79	0.16	
ADC12	2	66.75	16.22	15.43	0.42	0.03	1.14	
ADC12	3	24.73	74.75	0.24	0.13	0.05	0.09	
	4	98.88	0.68	0.23	0.13	0.04	0.04	
ADC12-0.66Ce	5	65.82	15.33	18.62	0.23	-	-	-

Continued								
ADC12 1 07C-	6	51.81	33.22	-	12.89	2.08	-	-
ADC12-1.07Ce	7	68.50	1.09	29.32	0.43	0.57	-	-
ADC12 1 02Ca	8	62.00	9.17	25.59	-	-	-	3.24
ADC12-1.92Ce	9	60.78	25.32	-	-	-	-	13.90

重力铸造获得的铸态 ADC12 合金的 XRD 谱由大量的α-Al 基体、Si 相和少量的 Al₂Cu、Al₈SiFe₂相的峰组成,而添加 1.07% Ce 后,铸态合金的 XRD 谱除存在上述四种相的峰外,还出现了 Al₄Ce 相的峰(见 图 3)。这表明, ADC12 合金加入 Ce 后生成的新稀土相应为 Al₄Ce。对比 SEM 微观组织可知,灰色块状 第二相为 Al₂Cu 相(见图 2 中 5、7、8#),灰色不规则状第二相为 Al₈SiFe₂相(见图 2 中 6#),白色相为 Al₄Ce 相(见图 2 中 9#)。

Figure 3. XRD spectra of as-cast ADC12-xCe alloys 图 3. 铸态 ADC12-xCe 合金的 XRD 谱

3.2. 铸态性能

重力铸造获得的铸态 ADC12 合金呈现良好的流动性能,流动长度可达到 1287 mm。添加 0.66% Ce, 铸态合金的流动性能进一步提高,流动长度提高至 1340 mm。但继续添加 Ce (1.07%和 1.92%),合金流 动长度却显著下降,甚至短于 ADC12 基础合金(见图 4)。由微观组织看到,ADC12 基础合金铸态组织主 要由 *a*-Al 基体、针状 Si 相、小块状 Al₂Cu、骨骼状 Al₈SiFe₂相组成,骨骼状和长条状相在凝固过程中会 阻碍合金流动,减缓流动速度,因此流动性能整体一般。当添加 0.66% Ce 后,Ce 在铸态组织中形成较 多细小的颗粒状稀土相,同时骨骼状相减少,相尺寸变小,对合金熔体的流动阻力减小,因此流动性能 得到一定提升。继续添加 Ce (1.07%),铸态组织中针状稀土相开始增多,且发生粗化,因此合金流动性 能下降[14] [15]。同时,适量 Ce 能减少熔体中的低熔点夹杂物,降低熔体粘度,同样能增加流动性能。 但是过量 Ce 会加剧稀土相的富集,聚集到一定程度就有可能成为夹杂物,从而阻碍熔体的流动速率。

重力铸造获得的铸态 ADC12 合金室温综合拉伸力学性能一般,抗拉强度为 188 MPa,而伸长率仅为 1.5%。随着 Ce 含量的增加,铸态综合拉伸力学性能先提高后降低,在 Ce 含量为 1.07%时抗拉强度和伸 长率分别达到 196 MPa 和 2.5%,特别是伸长率提高幅度达到 67% (见图 5)。Ce 元素会使共晶温度降低, 共晶温度抑制 $\Delta T_{\rm E}$ 可表示为: $\Delta T_{\rm E} = T_{\rm EU} - T_{\rm EM}$,式中: $T_{\rm EU}$ 指未变质合金的共晶温度, $T_{\rm EM}$ 指变质合金的共晶温度, $\Delta T_{\rm E} > 0$,所以使得枝晶凝固区间增大,从而合金在凝固过程中 α -Al 枝晶发生破碎,合金抗拉强 度有所提高[16]。添加适量 Ce,铸态组织发生较明显的细化,且原先的有害针状 Si 相形态发生改变,转

变为细小颗粒状,因此铸态合金伸长率有明显提高。但是随着 Ce 添加量的继续增多,稀土相越来越多, 形状呈长条状,且发生粗化,易产生应力集中,因此铸态伸长率又有所降低。

Figure 4. Macro-graphs (a) and flow length (b) of flow property samples of as-cast ADC12-*x*Ce alloys 图 4. 铸态 ADC12-*x*Ce 合金的流动性能试样宏观图(a)和对应的流动长度(b)

Figure 5. Tensile mechanical properties of as-cast ADC12-*x*Ce alloys 图 5. 铸态 ADC12-*x*Ce 合金的拉伸力学性能

4. 结论

(1) ADC12 合金铸态组织由α-Al 基体、Si 相和少量 Al₂Cu、Al₈SiFe₂相组成; Ce 的添加较明显地细 化了铸态组织,初生 α-Al 由粗大的树枝晶转变为细小的胞状晶和等轴晶,有害的针状共晶硅转变为细小 的颗粒状,出现新稀土相 Al₄Ce,含量逐渐增多,大多数稀土相和非稀土相趋于以条状和纤维状存在。

(2) 铸态 ADC12 合金流动长度、抗拉强度和伸长率分别为 1287 mm、188 MPa 和 1.5%。随着 Ce 含量的增加,铸态合金综合性能先提高后降低。ADC12-0.66Ce 合金流动性能最佳,流动长度达到 1340 mm, 而 ADC12-1.07Ce 合金拉伸力学性能最佳,抗拉强度和伸长率分别提高至 196 MPa 和 2.5%。

基金项目

广东省科学院发展专项资金项目(2019GDASYL-0203002);广东省重点领域研发计划项目

(2020B010186002); 肇庆市科技项目(2018K006); 广州市科技项目(201906040007)。

参考文献

- Okayasu, M., Ota, K., Takeuchi, S., *et al.* (2014) Influence of Microstructural Characteristics on Mechanical Properties of ADC12 Aluminum Alloy. *Materials Science and Engineering A*, **592**, 189-200. https://doi.org/10.1016/j.msea.2013.10.098
- [2] Huang, X. and Yan, H. (2013) Effect of Trace La Addition on Microstructure and Mechanical Property of As-Cast ADC12 Al-Alloy. *Journal of Wuhan University of Technology (Materials Science Edition)*, 28, 202-205. https://doi.org/10.1007/s11595-013-0665-x
- [3] Hu, X.W., Ai, F.R. and Yan, H. (2012) Influences of Pouring Temperature and Cooling Rate on Microstructure and Mechanical Properties of Casting A1-Si-Cu Aluminum Alloy. *Acta Metallurgic Sinica (English Letters)*, 25, 272-278.
- [4] Khalifa, W., Tsunekawa, Y. and Okumiya, M. (2010) Effect of Ultrasonic Treatment on the Fe-Intermetallic Phases in ADC12 Die Cast Alloy. *Journal of Materials Processing Technology*, 210, 2178-2187. <u>https://doi.org/10.1016/j.jmatprotec.2010.08.008</u>
- [5] Wang, Z.Y., Ji, Z.S., Sun, L.X., et al. (2010) Microstructure of Semi-Solid ADC12 Aluminum Alloy Adopting New SIMA Method. Transaction of Nonferrous Metals Society of China, 20, s744-s748. https://doi.org/10.1016/S1003-6326(10)60574-2
- [6] Mahmoud, M.G., Samuel, A.M., Doty, H.W., et al. (2020) Effect of the Addition of La and Ce on the Solidification Behavior of Al-Cu and Al-Si-Cu Cast Alloys. International Journal of Metalcasting, 14, 191-206. https://doi.org/10.1007/s40962-019-00351-y
- [7] Lu, T., Pan, Y., Wu, J.L., *et al.* (2015) Effects of La Addition on the Microstructure and Tensile Properties of Al-Si-Cu-Mg Casting Alloys. *International Journal of Minerals Metallurgy and Materials*, 22, 405-410. <u>https://doi.org/10.1007/s12613-015-1086-y</u>
- [8] Li, Z.H., Yan, H., Hu, Z., et al. (2014) Fluidity of ADC12 + xLa Aluminum Alloys. Rare Metals, No. 1, 1-7. <u>https://doi.org/10.1007/s12598-014-0383-3</u>
- [9] 闫洪,李正华,黄昕. 镧对 ADC12 铝合金固溶时效组织的影响[J]. 稀土, 2013, 34(5): 1-5.
- [10] Zhi, H.U., Yan, H. and Rao, Y.S. (2013) Effects of Samarium Addition on Microstructure and Mechanical Properties of As-Cast Al-Si-Cu Alloy. *Transactions of Nonferrous Metals Society of China*, 23, 3228-3234. <u>https://doi.org/10.1016/S1003-6326(13)62857-5</u>
- [11] 饶远生, 闫洪, 胡志. Sm 对 ADC12 合金微观组织与力学性能的影响[J]. 特种铸造及有色合金, 2012, 32(10): 965-969.
- [12] Huang, Z.H., Yao, Y., Qi, W.J., et al. (2018) Enhancing the Impact Toughness of ADC12 Aluminum Alloy by Alloying with Y and Solution Treatment. In: *High Performance Structural Materials*, Springer, Berlin, 297-306. <u>https://doi.org/10.1007/978-981-13-0104-9_31</u>
- [13] 张银帅, 黄正华, 戚文军, 等. 稀土 Y 对 ADC12 合金铸态组织与性能的影响[J]. 稀土, 2018, 39(5): 40-48.
- [14] Julius, C.S., Richter, K.W., et al. (2001) The Binary System RE-Al. Journal Alloys and Compounds, 320, 224-227. <u>https://doi.org/10.1016/S0925-8388(00)01485-7</u>
- [15] 刘盛, 袁武华, 孙莉. 热处理工艺对 Al-7Si-0.35Mg-3.6Cu-0.15Ce 合金显微组织和力学性能的影响[J]. 矿冶工程, 2015, 35(4): 119-121+125.
- [16] 姚丽娟, 坚增运, 朱满, 等. 富铈混合稀土对 A356 铝合金凝固组织和力学性能的影响[J]. 铸造, 2016, 65(2): 166-171.