Published Online September 2022 in Hans. https://doi.org/10.12677/ojns.2022.105087

黑龙江省城市工业污染时空演变特征分析

贾吉爽

哈尔滨师范大学,黑龙江 哈尔滨

收稿日期: 2022年8月6日; 录用日期: 2022年9月7日; 发布日期: 2022年9月14日

摘要

工业污染目前已成为影响人类健康、社会进步与可持续发展的热点问题,引起了全球的高度关注。本文通过时间与空间两个角度对黑龙江省2001至2016年的工业废气、废水、固体废物、粉(烟)尘及二氧化硫数据进行分析,结果发现:从时间角度分析,黑龙江省近15年内工业废水和粉尘排放量明显减少,然而工业废气、固体废物和二氧化硫呈现增长趋势,其中经济发达城市对于废水与粉尘治理效果良好,发展中城市五大污染物排放量均呈上升趋势,仍需要加大监管力度;从空间角度分析,黑龙江省城市工业污染重心始终处在省西南地区,十年内迁移变化不明显。因此,对于黑龙江省西南地区经济发达城市工业应重点监察、定期监测,经济发展中地区应引进新兴技术,推动绿色清洁生产。

关键词

黑龙江省,城市工业污染,时间变化特征,空间变化特征

Analysis of the Spatial and Temporal Evolution of Industrial Pollution in Urban Heilongjiang Province

Jishuang Jia

Harbin Normal University, Harbin Heilongjiang

Received: Aug. 6th, 2022; accepted: Sep. 7th, 2022; published: Sep. 14th, 2022

Abstract

Industrial pollution has now become a hot issue affecting human health, social progress and sustainable development, and has attracted great attention worldwide. This paper analyzes industrial waste gas, wastewater, solid waste, dust and sulfur dioxide data in Heilongjiang Province from 2001 to 2016 from both time and space perspectives, and finds that: from the time perspective, industrial wastewater and dust emissions in Heilongjiang Province have decreased significantly in

文章引用: 贾吉爽. 黑龙江省城市工业污染时空演变特征分析[J]. 自然科学, 2022, 10(5): 757-766. DOI: 10.12677/ojns.2022.105087

the past 15 years, however, industrial waste gas, solid waste and sulfur dioxide show an increasing trend, among which economically developed cities have a good effect on However, industrial waste gas, solid waste and sulfur dioxide show an increasing trend, among which economically developed cities have a good effect on wastewater and dust management, while developing cities have an increasing trend in emissions of the five major pollutants, which still need more supervision; from a spatial perspective, the center of gravity of urban industrial pollution in Heilongjiang Province has always been in the southwestern part of the province, with no significant migration changes within ten years. Therefore, industries in economically developed cities in the southwest of Heilongjiang Province should be focused on supervision and regular monitoring, and new technologies should be introduced in economically developing areas to promote green and clean production.

Keywords

Heilongjiang Province, Urban Industrial Pollution, Time Variation Characteristics, Spatial Variation Characteristics

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 前言

近年来,国内外学者在城市工业污染问题上开展了大量的多角度的研究,在城市工业污染上取得了 一定的成果。Selden 特别强调美国空气清洁法案(CAA) [1]在其他技术效应中的作用及意义。胡志强[2]采 用空间分析和计量模型等方法,研究中国 285 个地级及以上城市工业集聚和污染排放的空间特征及内在 关系,结果表明:工业集聚与污染排放的重心分布、轨迹、距离、速度差异较大。任嘉敏[3]发现东北地 区工业废水与工业 SO, 排放量及占全国比重均有提升,尤其工业 SO, 污染对生态环境胁迫逐渐增大。吴 加伟[4]利用空间集散程度测度等方法探讨了长三角地区主要工业污染物排放相对规模和强度的时空格局 演变规律。尹上岗[5]等人构建工业经济规模——污染排放异速增长模型,分析长三角地区工业经济规模 与工业污染指数两者关系的时空变化规律。王春娟[6]发现酒泉市工业污染物整体上从 2009 年起呈现先升 高再逐渐降低的趋势。马磊[7]发现随着城市化水平提高,工业污染总体呈现倒 U 型,经济结构是工业污 染下降最稳健的变量。韩楠[8]等人发现中国各省域(不含港澳台)工业废气排放存在显著的空间自相关和 空间集聚效应。周侃[9]发现工业源主导促进了大气污染物集聚式排放,特别在环渤海及其经济腹地区域, 污染源结构强化了污染物排放的空间集聚效应。韩楠[10]运用探索性空间数据分析方法对京津冀工业污染 的空间分布特征进行研究,显示京津冀工业污染呈现东北部、西南部的工业污染高值集聚区以及中南部 的低值集聚区。郭政[11]等人发现 2003~2015 年工业废水和工业 SO;主要集中分布于长江沿岸城市且污 染集中度指数由高到低大致呈半圈层状向周围递减。李芸邑[12]等人发现 2013~2017 年长江经济带的工 业 SO₂、工业废水与工业烟粉尘排放量呈降低趋势,高排放城市减少,低排放城市增多。

从目前研究现状可以看出,国内外学者在城市工业污染研究方面取得了很多成果,而工业污染问题 也逐渐跻身于环境问题中央,为了国家的可持续发展目标,解决工业污染问题迫在眉睫,虽现今工业污 染已取得丰硕成果,但已有的研究仍然存在不足,现有研究大多只重视时间的研究对空间的分布变化未 展开研究或只针对一个工业污染指标加以研究,缺少工业污染因素的总体分析且对工业固体废物研究少。 因此,本文将拟对黑龙江省工业污染时空变化特征和各工业污染因素相结合进行综合分析研究。

2. 数据来源与研究方法

2.1. 数据来源

本文利用 Arcgis 软件对黑龙江省 12 个地级市、1 个地区 2002~2016 年间 5 种工业污染的时空变化进行统计分析。在获取数据上,相关的城市工业污染数据主要从《黑龙江省统计年鉴》[13]获得,其他相关数据主要依托中国知网数据库获得。

2.2. 数据分析方法

本文研究黑龙江省城市工业污染时空变化特征,借助地理学空间分析方法,通过利用 EXCEL、Arcgis 等软件对相关数据进行处理,并制作出相关图表进行分析从而得出结论。通过查阅梳理相关的文献,一方面,对黑龙江省城市工业污染因素、污染产生原理以及时空变化特征研究分析方法等方面进行深入研究以次理清本文研究思路,构建分析模型。另一方面,学习并借鉴资料中针对数年间污染因素时空数据的分析计算方法。利用 Arcgis10.6 对城市工业污染数据处理分析并制作空间图形来描绘黑龙江省城市工业污染因素的空间变化。

3. 黑龙江省城市工业污染时空变化特征分析

3.1. 黑龙江省工业废气污染时空变化特征分析

3.1.1. 各区域工业废气时间变化特征分析

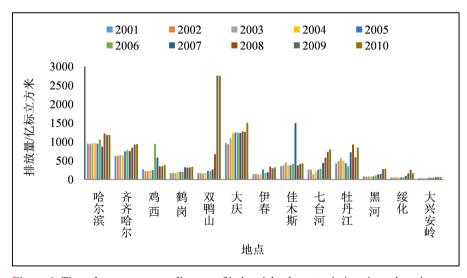


Figure 1. Time change sequence diagram of industrial exhaust emissions in each region 图 1. 各区域工业废气排放量时间变化序列图

从图 1 中可知黑龙江省各区域工业废气排放总量的时间变化。哈尔滨市 2001~2005 年废气排放量处于稳定状态,2008 年排放量增加,年增长率 2.4%;齐齐哈尔市的排放量普遍上升,年增长率为 4.6%;鸡西市废气排放量在 2001~2005 年、2008~2010 年间基本稳定,2006 年骤增达到峰值,2006 年与上年相比增长了 278.8%,年均增长率为 3.9%;鹤岗市年均增长率 7.8%;双鸭山市 2001~2007 年基本稳定,2008年排放量骤增,2009、2010 年持续增加成为全省排放量最大值,2009 较去年增加 311.8%,年均增长率 35.8%;大庆市普遍呈现上升趋势,年均增长率为 5.0%;伊春市和大兴安岭区与其他城市相比排放量最低,年增长率分别为 9.6%、6.1%;佳木斯市除 2007 年排放量骤增外总体相对稳定,年均增长率 2.1%;

七台河市 2007~2010 年增幅明显,其他年份相对较小,年均增长率 13.1%; 牡丹江市 2007~2010 年间排放量较前六年数值大,年均增长率 7.9%。总之,2001~2010 年大庆市工业废气排放总量最高达 12012.6 亿标立方米,哈尔滨市次之 10292.4 亿标立方米,双鸭山市的变化幅度最明显增速最高可达 311.8%且年均增长率最大为 35.8%。

3.1.2. 各区域工业废气空间变化特征分析

从表 1 中可以看出黑龙江省各区域工业废气排放主要集中在哈尔滨市和大庆市,黑河、绥化、大兴安岭排放最少,2009、2010 年双鸭山市为主要工业废气排放城市,从整体观察,黑龙江省各区域的工业废气均有所增加。

Table 1. Total industrial waste gas emissions from each region (unit: $1 \times 10^8 \text{ m}^2$) 表 1. 各区域工业废气排放总量(单位: 亿标立方米)

	2001	2002	2002	2004	2005	2006	2007	2000	2000	2010
类别	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
哈尔滨	956	942.4	959	965	951	1062	873	1218	1185	1181
齐齐哈尔	626	626.7	649	638	750	785	760	846	932	940
鸡西	274	225.5	225	237	250	947	583	358	350	386
鹤岗	173	174.0	169	206	205	205	328	315	322	339
双鸭山	175	166.4	162	175	233	226	271	670	2759	2748
大庆	965	938.6	1097	1238	1246	1246	1235	1277	1267	1503
伊春	142	146.0	140	143	268	170	196	339	300	323
佳木斯	355	381.6	453	379	387	416	1502	379	418	429
七台河	264	263.0	141	221	259	289	441	580	732	800
牡丹江	429	490.2	574	494	437	361	726	930	597	852
黑河	85	80.9	84	83	85	111	136	149	277	287
绥化	55	56.0	57	59	58	63	96	160	256	168
大兴安岭	38	36.5	32	39	45	51	46	62	66	65

3.2. 黑龙江省工业废水污染时空变化特征分析

3.2.1. 各区域工业废水时间变化特征分析

从图 2 中可知黑龙江省各区域工业废水排放总量的时间变化。哈尔滨市整体呈下降趋势,年均下降率 6.6%; 齐齐哈尔市在 2001~2004 年和 2007~2009 年呈下降趋势,其中 2004 年降幅最大 44.7%,年均下降率 7.6%; 鸡西市总体呈上升趋势,年均增长率 14.7%; 鹤岗市整体呈下降趋势,下降幅度小,年均下降率 3.6%; 双鸭山市 2009~2010 年增长幅度较大为 311.6%,年均增长率 22.3%; 大庆市基本处于稳定增长趋势,年均增长率为 2.7%; 伊春市、大兴安岭区、黑河市均呈现下降趋势且年均下降率依次减少,分别为 7.6%、1.6%、1.5%; 绥化市整体呈上升趋势,其中 2008 年废水排放量增幅较大,较前一年相比增加 193.8%,年均增长率 4.4%; 七台河市 2001~2004 年基本稳定,2005 和 2006 增量变大,增长率为 101.2%,年均增长率为 5.8%; 佳木斯市整体呈下降趋势,其中 2003、2004 年增量变大,增长率达 30.5%,年均下降率 7%; 牡丹江市 2001~2006 年呈上升趋势,年均增长率 14.8%,2007 年废水排放量骤减,与 2006 年相比下降 73.9%,2006~2010 年排放量基本稳定,总体年降幅为 6.9%。总之,2001~2010 年间大

自然科学

庆市工业废水排放总量最多为80,742万吨,齐齐哈尔市次之为79,427万吨,双鸭山市的变化幅度最明显增速最高可达311.6%且年均增长率最大为22.3%。齐齐哈尔市、伊春市年均下降率最大均为7.6%。

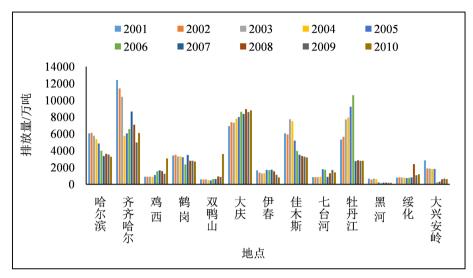
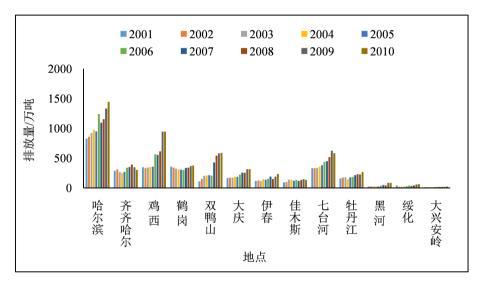


Figure 2. Time sequence of the variation of industrial wastewater discharge in each region **图** 2. 各区域工业废水排放量时间变化序列图

3.2.2. 各区域工业废水空间变化特征分析

从表 2 中可以看出,黑龙江省各地区的工业废水排放主要集中在大庆市和齐齐哈尔市,黑河、双鸭山的排放量最低。黑龙江省工业废水排放量在 2001~2010 年间大部分区域都有不同程度的减少,而大庆、双鸭山、七台河、绥化、鸡西有所增加,其中双鸭山废水排放量下降明显,鸡西次之,绥化最少。


Table 2. Industrial wastewater discharge in each region (unit: 10 kt) 表 2. 各区域工业废水排放量(计量单位: 万吨)

类别	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
哈尔滨	6059	6127	5780	5356	4851	3980	3356	3620	3539	3283
齐齐哈尔	12,414	11,396	10,412	5762	6062	6563	8661	7099	4968	6090
鸡西	889	886	888	867	1103	1540	1654	1559	1239	3057
鹤岗	3416	3500	3300	3313	3220	2353	3485	2805	2790	2705
双鸭山	586	560	585	479	479	617	616	930	874	3597
大庆	6928	7375	7312	7799	8003	8623	8373	8944	8597	8788
伊春	1652	1388	1271	1309	1704	1665	1728	1546	1130	813
佳木斯	6067	5926	7734	7506	5188	3960	3511	3361	3276	3185
七台河	847	840	836	884	1779	1733	873	1295	1698	1408
牡丹江	5309	5644	7725	7939	9234	10,604	2763	2847	2778	2793
黑河	664	548	663	598	232	126	191	187	161	161
绥化	794	823	825	797	732	762	818	2403	1065	1173
大兴安岭	2838	1879	1859	1804	1831	216	303	593	670	599

3.3. 黑龙江省工业固体废物污染时空变化特征分析

3.3.1. 各区域工业固体废物时间变化特征分析

从图 3 中可以看出黑龙江省各地区工业固体废物排放总量的时间变化。黑龙江省各区域工业固体废物产生量均呈增长趋势,如图从左至右年均增长率依次为 6.4%、0.65%、11.8%、0.61%、20.4%、7.3%、7.8%、4.1%、6.5%、6.0%、13.7%、5.2%、7.5%。鸡西市 2009 年同比增长 54.8%,双鸭山市 2007 年同比增长 107.3%。总之,2001~2010 年间哈尔滨市工业固体废物产生总量最多为 10,774 万吨,鸡西市次之5338 万吨,双鸭山市的变化幅度最明显增速最高可达 107.3%且年均增长率最大为 20.4%。

Figure 3. A sequence of time change of industrial solid waste discharge in each region **图 3.** 各区域工业固体废物排放量时间变化序列图

3.3.2. 各区域工业固体废物空间变化特征分析

从表 3 中可以看出黑龙江省各区域工业固体废物排放主要集中在哈尔滨市,大兴安岭、黑河、绥化排放最少,2009~2010 年间鸡西市固废产生量明显增加。从整体观察,黑龙江省各区域的工业固体废物均有所增加,增量最多的为哈尔滨。

Table 3. Solid waste production volume (unit: 10 kt) 表 3. 固体废物产生量(计量单位: 万吨)

类别	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
哈尔滨	825	858	919	972	946	1238	1093	1150	1330	1443
齐齐哈尔	285	310	266	245	270	340	352	392	345	302
鸡西	345	330	343	352	355	563	551	610	944	945
鹤岗	356	341	322	311	305	301	334	340	368	376
双鸭山	110	149	199	209	215	206	427	542	578	587
大庆	166	170	171	188	188	222	258	255	312	313
伊春	118	126	113	145	139	152	190	149	190	232

Continued										
佳木斯	93	95	136	134	120	134	117	132	146	134
七台河	329	328	335	356	380	436	448	517	625	582
牡丹江	158	174	176	143	175	184	213	229	224	266
黑河	27	26	26	25	25	37	48	42	84	86
绥化	40	21	21	22	25	38	33	42	58	63
大兴安岭	12	12	9	12	13	14	14	18	18	23

3.4. 黑龙江省工业粉(烟)尘污染时空特征分析

3.4.1. 各区域工业粉(烟)尘时间变化特征分析

从图 4 中可以看出黑龙江省各地区工业粉(烟)尘排放总量的时间变化。哈尔滨市、齐齐哈尔市、鸡西市、鹤岗市、大庆市、佳木斯市、牡丹江市普遍呈下降趋势,年均下降率分别为 9.6%、8.7%、2.6%、3.3%、1.8%、10%、0.3%; 双鸭山市、伊春市、七台河市、黑河市、绥化市、大兴安岭区普遍呈上升趋势,年均增长率分别为 3.5%、0.31%、6.5%、6%、44.4%、6.9%。哈尔滨市 2010 年同比下降 48.5%,齐齐哈尔市 2008 年同比下降 36.9%。佳木斯市 2009 同比下降 48.5%,绥化市 2010 同比增加 354.3%。鹤岗、黑河、绥化等区域变化相对较小。总之,2001~2010 年间哈尔滨市工业粉(烟)尘排放总量最多为 852,517 吨,牡丹江市次之 593,828 吨,绥化市的变化幅度最明显增速最高可达 354.3%且年均增长率最大为 44.4%,佳木斯市年均下降率最大为 10%。

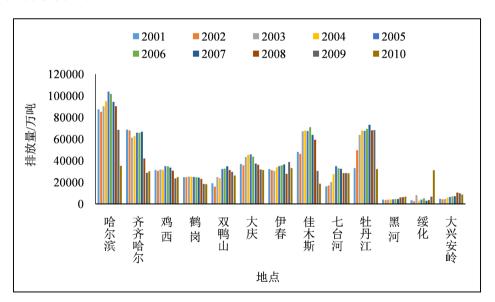


Figure 4. Time sequence of variation of industrial powder (smoke) dust emissions in each region 图 4. 各区域工业粉(烟)尘排放量时间变化序列图

3.4.2. 各区域工业粉(烟)尘空间变化特征分析

从表 4 中可以看出黑龙江省各区域工业粉(烟)尘排放主要集中在哈尔滨、牡丹江、齐齐哈尔,大兴安岭、黑河、绥化排放最少,而 2001~2010 年间哈尔滨、牡丹江、齐齐哈尔粉尘排放量均有不同程度的减少,大兴安岭、黑河、绥化却有明显的增长趋势。

Table 4. Powder (smoke) dust emission (unit: t) 表 4. 粉(烟)尘排放量(计量单位: 吨)

类别	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
哈尔滨	87,519	85,209	90,275	95,043	103,906	101,743	94,456	90,463	68,594	35,309
齐齐哈尔	68,771	67,977	61,336	62,856	65,912	65,999	66,778	42,164	28,698	30,298
鸡西	31,449	30,603	31,900	31,612	34,984	34,859	33,574	30,784	23,726	24,863
鹤岗	24,863	24,850	25,262	25,361	24,983	24,882	24,480	23,250	18,691	18,307
双鸭山	19,171	16,145	24,834	23,869	32,470	32,813	34,889	31,406	29,770	26,331
大庆	36,908	35,857	43,524	45,500	45,860	43,835	37,398	36,275	32,074	31,417
伊春	32,322	31,308	30,516	33,920	34,971	35,668	36,592	28,016	38,783	33,223
佳木斯	48,293	46,278	67,309	67,787	67,592	70,994	63,826	59,435	30,601	18,757
七台河	16,202	17,103	20,230	27,636	34,948	33,064	32,646	28,641	28,644	28,513
牡丹江	33,144	49,710	63,883	67,894	67,672	69,478	73,286	68,221	68,302	32,238
黑河	4104	3577	4112	4167	4377	4581	4633	6120	6473	6936
绥化	3447	2513	8246	3059	4056	5278	3002	3567	6892	31,310
大兴安岭	4822	4405	4473	5669	6617	6995	7162	10599	9931	8827

3.5. 黑龙江省工业二氧化硫污染时空变化特征分析

3.5.1. 各区域工业二氧化硫时间变化特征分析

从图 5 中可知黑龙江省各区域工业二氧化硫排放总量的时间变化。黑龙江省各区域工业二氧化硫排放量均呈增长趋势,如图从左至右年均增长率依次为 7.1%、2.7%、9.5%、14.7%、13.5%、5.9%、3.4%、9.3%、9.3%、7.5%、9.2%、12.2%、4.1%。哈尔滨市 2005 年与上年相比增加 39.1%,齐齐哈尔市 2003 年同比增加 34.1%,鸡西市 2005 年同比增加 100.8%,鹤岗市 2005 年同比增加 173.6%,双鸭山市 2005 年同比增加 147.4%,大庆市 2003 年同比增加 46.6%佳木斯市 2005 年同比增加 69.5%,七台河市 2005 年同比增加 110.5%,牡丹江市 2003 年同比增加 37.5%,黑河市 2005 年同比增加 81.0%,绥化市 2005 年同比增加 128.9%。

总之,2001~2010年间大庆市工业二氧化硫排放总量最多 533,562 吨,齐齐哈尔市市次之 481,401 吨, 鹤岗市的变化幅度最明显增速最高可达 173.6%且年均增长率最大为 14.7%。与此同时,根据数据分析发现 2005年黑龙江省各区域工业二氧化硫排放量普遍发生明显上升情况。

3.5.2. 各区域工业二氧化硫空间变化特征分析

从表 5 中可以看出黑龙江省各区域工业二氧化硫排放主要集中在大庆、齐齐哈尔、哈尔滨,大兴安岭排放最少。从整体观察,黑龙江省各区域的工业二氧化硫均有所增加,增量最多的为哈尔滨,2005 年是变化最大的一年,各地区二氧化硫排放增长率明显增加。

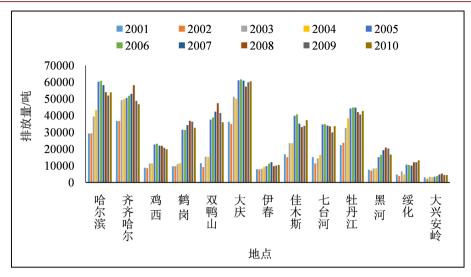


Figure 5. A sequence of time variation of industrial sulfur dioxide emissions in each region 图 5. 各区域工业二氧化硫排放量时间变化序列图

Table 5. Sulphur dioxide emissions (unit: t) 表 5. 二氧化硫排放量(计量单位: 吨)

类别	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
哈尔滨	29,197	29,315	39,339	43,364	60,319	60,751	58,232	54,022	51,879	53,941
齐齐哈尔	36,790	36,680	49,187	49,822	50,576	51,836	52,934	58,091	48,755	46,730
鸡西	8734	8448	11,369	11,308	22,712	23,075	21,933	21,900	20,600	19,762
鹤岗	9500	9599	11,021	11,484	31,423	31,373	34,331	36,766	36,277	32,703
双鸭山	11,465	9116	15,344	15,191	37,590	38,767	42,264	47,382	41,483	35,957
大庆	36,216	34,930	51,200	50,024	61,097	61,594	60,916	57,254	59,814	60,517
伊春	7816	7709	8184	9165	9757	11,277	12,072	9716	10,086	10,515
佳木斯	16,763	15,043	23,423	23,524	39,868	40,741	35,187	33,068	33,770	37,268
七台河	15,085	11,352	14,390	16,454	34,638	34,834	33,974	33,544	29,858	33,657
牡丹江	22,201	23,711	32,602	38,398	44,202	44,823	44,749	41,961	40,597	42,691
黑河	7550	6962	8289	8353	15,116	16,461	19,172	20,836	20,211	16,626
绥化	4668	3826	6562	4614	10,562	10,490	10,086	11,983	12,002	13,118
大兴安岭	3007	2156	3357	3065	3367	3819	4667	5242	4321	4331

4. 结论与建议

本文通过对黑龙江省工业废气、废水、固体废物、粉(烟)尘、二氧化硫排放的时空分布特征分析,得出以下结论: 1) 黑龙江省工业污染主要集中在哈尔滨、大庆、齐齐哈尔等经济发达城市,这些城市中工业废气、二氧化硫、固体废物排放量均呈增长趋势,然而工业废水和粉尘得到了很好的治理,排放量也

大幅下降。2) 黑龙江省各区域工业废气、固体废物、二氧化硫排放量均呈增加趋势,其中双鸭山工业废气、固体废物增长显著,鹤岗工业二氧化硫排放增长率最高。3) 黑龙江省各区域工业废水、粉(烟)尘排放量有增有减。排放量降低区域主要是经济发达地区,如哈尔滨、齐齐哈尔。排放量增加区域主要集中在经济发展中地区,如双鸭山、绥化,其中双鸭山工业废水明显增加,绥化工业粉(烟)尘排放量增长最多。

因此,基于以上对黑龙江省工业污染排放时空分布特征的分析,提出以下建议:加大节能减排、新能源技术研发的科技创新支持,推动清洁生产,减少工业污染,构建绿色经济发展体系[14],实现可持续发展。推动工业化结构升级[15],大力发展第三产业,促进全省节能和先进产业结构发展,以排污征收费制度为辅助手段,有效调控工业污染排放,减少工业污染。政府应加强区域内合作,大力推进省内各区域间环保合作,实现各区域间的协调可持续发展。加大对经济发达城市工业废水、粉(烟)尘排放的治理,与此同时继续监督工业废气、固体废物、二氧化硫的排放,防止造成治理效果反弹。

参考文献

- [1] 美国联邦政府. 清洁空气法[M]. 华盛顿特区: 联邦政府, 1963.
- [2] 胡志强, 苗健铭, 苗长虹. 中国地市工业集聚与污染排放的空间特征及计量检验[J]. 地理科学, 2018, 38(2): 168-176.
- [3] 任嘉敏, 马延吉. 东北地区工业污染时空格局演变研究[J]. 环境科学学报, 2018, 38(5): 2108-2118.
- [4] 吴加伟, 陈雯, 耿佩, 杨柳青. 经济转型背景下工业污染时空格局演变及其驱动因素研究——以长江三角洲地区为例[J]. 长江流域资源与环境, 2020, 29(3): 535-546.
- [5] 尹上岗,杨山,龚海波. 长三角工业经济规模与污染排放异速关系及互动机制[J/OL]. 地理学报: 1-17. https://kns.cnki.net/kcms/detail/11.1856.p.20220605.1546.002.html, 2022-08-22.
- [6] 王春娟, 张文, 刘晓燕, 向国立, 王贵. 基于灰色关联度的酒泉市工业污染趋势分析[J]. 能源与环境, 2021(6): 19-21.
- [7] 马磊. 中国的城市化与工业污染: 1995-2005[D]: [硕士学位论文]. 上海: 复旦大学, 2008.
- [8] 韩楠, 于维洋. 中国工业废气排放的空间特征及其影响因素研究[J]. 地理科学, 2016, 36(2): 196-203.
- [9] 周侃, 樊杰. 中国环境污染源的区域差异及其社会经济影响因素——基于 339 个地级行政单元截面数据的实证 分析[J]. 地理学报, 2016, 71(11): 1912-1925.
- [10] 韩楠, 范博一, 罗新宇. 京津冀工业污染的空间特征及供给侧减排效果[J]. 河北环境工程学院学报, 2021, 31(5): 51-55+61.
- [11] 郭政, 陈爽, 董平, 陆玉麒. 长江三角洲城市群工业污染时空演化及其驱动因素[J]. 中国环境科学, 2019, 39(3): 1323-1335. https://www.cnki.net/kcms/doi/10.19674/j.cnki.issn1000-6923.2019.0160.html
- [12] 李芸邑, 刘利萍, 刘元元. 长江经济带工业污染排放空间分布格局及其影响因素[J]. 环境科学, 2021, 42(8): 3820-3828. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13227/j.hikx.202011017
- [13] 黑龙江统计局. 黑龙江统计年鉴[M]. 北京: 中国统计出版社, 2001-2016.
- [14] 李玉红. 中国工业污染的空间分布与治理研究[J]. 经济学家, 2018(9): 59-65.
- [15] 彭文斌, 吴伟平, 邝嫦娥. 中国工业污染空间分布格局研究[J]. 统计与决策, 2013(20): 115-117. https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13546/j.cnki.tjyjc.2013.20.007