Published Online November 2019 in Hans. http://www.hanspub.org/journal/pm https://doi.org/10.12677/pm.2019.99125

A Classification on a Class of Vertex Quasiprimitive and Bi-Quasiprimitive Cubic Symmetric Graphs

Junjie Huang

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming Yunnan Email: 1281823822@qq.com

Received: Oct. 9th, 2019; accepted: Oct. 30th, 2019; published: Nov. 6th, 2019

Abstract

Let Γ be a graph and $G \leq \operatorname{Aut}\Gamma$. Then Γ is called a G-basic graph, if G is quasiprimitive or bi-quasiprimitive on vertex set $V\Gamma$. In this paper, we classify cubic symmetric G-basic graphs of order $2p^mq^n$, where p < q are primes, and $m, n \geq 1$.

Keywords

Symmetric Graph, Quasiprimitive Group, Bi-Quasiprimitive Group, Almost Simple Group

某类顶点拟本原和二部拟本原的3度对称图的 分类

黄俊杰

云南财经大学统计与数学学院,云南 昆明

Email: 1281823822@qq.com

收稿日期: 2019年10月9日; 录用日期: 2019年10月30日; 发布日期: 2019年11月6日

摘安

设 Γ 是一个图, $G \le Aut\Gamma$,则称 Γ 是一个G-基图,如果G在顶点集 $V\Gamma$ 上是拟本原的或者二部拟本原的。在这篇文章中,我们将分类阶为2p'''q''的3度对称G-基图,其中p < q为素数, $m,n \ge 1$ 。

文章引用: 黄俊杰. 某类顶点拟本原和二部拟本原的 3 度对称图的分类[J]. 理论数学, 2019, 9(9): 989-997. DOI: 10.12677/pm.2019.99125

关键词

对称图,拟本原群,二部拟本原群,几乎单群

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

1. 引言

对于一个图 Γ ,我们设 $V\Gamma$, $E\Gamma$ 和 $A\Gamma$ 分别表示 Γ 的顶点集,边集和弧集,Aut Γ 表示 Γ 的全自同构群; $|V\Gamma|$ 称为图 Γ 的阶。如果群 $G \leq \text{Aut}\Gamma$ 作用在 $V\Gamma$, $E\Gamma$ 或 $A\Gamma$ 上传递,则分别称 Γ 为 G-点传递图,G-边传递图或 G-弧传递图。特别地,弧传递图也称为对称图。对任意的 $u \in V\Gamma$,定义 $\Gamma(u) = \{u \in V\Gamma | \{u,v\} \in E\Gamma\}$ 为点 u 的邻域,称 $|\Gamma(u)|$ 为点 u 的度数,记为 val(u)。如果对任意的 $u,v \in V\Gamma$, u 和 v 的度数相等,则称 Γ 为正则图, $|\Gamma(u)|$ 为图 Γ 的度数,记作 $\text{val}(\Gamma) = \text{val}(u)$ 。给定一个正整数 s 和 $V\Gamma$ 上的 s+1 个点 u_0,u_1,\cdots,u_s ,称 (u_0,u_1,\cdots,u_s) 是一条 s-弧,如果 $u_{i-1} \neq u_{i+1}$ $(i=1,2,\cdots,s-1)$,且 u_{j-1} 和 u_j $(j=1,2,\cdots,s)$ 是邻接的。若 $G \leq \text{Aut}\Gamma$ 在 Γ 的 s-弧集上传递,则称 Γ 为 (G,s) -弧传递图,则称 Γ 为 (G,s) -传递图。特别地,一个 $(\text{Aut}\Gamma,s)$ -传递图可简单的称为 s-传递图。

在代数图论中,阶数特定的对称图受到了国内外学者的广泛关注。例如:文献([1])给出了不大于 768 个点的三度图的分类。设 p,q 为素数,在文献([2] [3] [4])中,作者分别分类了 p, 2p, 3p 阶的对称图;之后,Praeger 等在([5])和([6])中分别将其推广到 pq 阶的对称图。1947 年,Tutte 在文献([7])中确定了 3 度图的点稳定子群的结构,在此之后的几十年里,3 度对称图引起了大量学者的研究,他们给出了 3 度对称图的各种构造方法及其分类。例如,Du 和 Wang 在文献([8])中考虑了单群 PSL(2,r)上的 3 度 Cayley图,其中 r 为一个素数的方幂;Feng 等在([9])中分类了阶为 8p 和 $8p^2$ 的 3 度对称图;Zhou 和 Feng 在([10])中对 2pq 阶的 3 度对称图进行了分类。

设 $X \leq \operatorname{Sym}(\Omega)$ 是一个传递置换群,则称X是拟本原的,如果X的每个极小正规子群都在 Ω 上传递;称X是二部拟本原的,如果X的每个极小正规子群在 Ω 上至多有两个轨道并且存在一个极小正规子群作用在 Ω 上恰有两个轨道。给定一个图 Γ , $G \leq \operatorname{Aut}\Gamma$,称 Γ 是一个G-基图,如果G在顶点集 $V\Gamma$ 上是拟本原的或者二部拟本原的。研究对称图的一般分为以下两步:

第一步,研究对称图的基图;

第二步,刻画对称图的基图的正规覆盖。

基图的分类是研究对称图的基础,它不仅可以为学习对称图提供一些图例,而且对于后续研究基图的覆盖有着重要的参考作用。设 Γ 是一个阶为 $2p^mq^n$ 的 3 度对称图,本文将分类 Γ 的 G-基图,其中 p < q 为素数, $G \le \operatorname{Aut}\Gamma$, $m,n \ge 1$,所得主要结论如下:

定理 1.1: 设 p < q 为素数,Γ是一个阶为 $2p^mq^n$ 的 3 度 G-基对称图,其中 $G \le \operatorname{Aut}\Gamma$, $m,n \ge 1$,则 Γ 满足表 1。

2. 预备知识

本文所考虑的所有图均为有限的、非空的、无向的、连通的、以及没有圈和重边的正则图。关于本文 所使用的群论和图论的符号和基本概念都是标准的,可以参看学者们的著作([11] [12] [13] [14])等。例如:

Γ $Aut\Gamma$ (G,G_{α}) Γ $\operatorname{Aut}\Gamma$ (G,G_{α}) $\mathcal{G}_{\scriptscriptstyle{20}}^{\scriptscriptstyle{1}}$ S_5 (A_5,\mathbb{Z}_3) $\mathcal{G}_{\scriptscriptstyle{20}}^{\scriptscriptstyle{2}}$ $S_5 \times \mathbb{Z}_2$ (S_5, S_3) NC_{30} $(S_6.\mathbb{Z}_2, S_4 \times S_2)$ \mathcal{G}^{l}_{28} $(PSL(2,7),S_3)$ $S_{\epsilon}.\mathbb{Z}$ PGL(2,7)PGL(2,7) $(PGL(2,7), S_3 \times S_2)$ \mathcal{G}^{1}_{56} PGL(2,7) $(PSL(2,7),\mathbb{Z}_3)$ G_{28}^{2} G_{56}^{2} $(PGL(2,7),S_3)$ G_{56}^{3} $(PGL(2,7),S_3)$ PGL(2,7) $PGL(2,7)\times\mathbb{Z}$, PGL(2,11) $(PGL(2,11), S_3 \times S_2)$ NC_{182}^{1} $(PSL(2,13), S_3)$ C_{110} PSL(2,13) PSL(2,17) NC_{182}^2 PGL(2,13) $(PGL(2,13), S_1 \times S_2)$ NC_{102} $(PSL(2,17), S_4)$ NC_{506} PGL(2,23) $(PSL(2,23), S_3 \times S_2)$ C_{506} PGL(2,23) $(PGL(2,23),S_4)$ $(Aut(PSL(2,25)), S_4 \times S_2)$ Aut(PSL(2,25)) $(PGL(2,25), S_4)$ G_{650}^{2} Aut(PSL(2,25)) G_{650}^{1} PSL(2,47) $(PSL(2,47), S_4)$ $(PSL(3,3),S_4)$ NC_{2162} \mathcal{G}^{l}_{234} Aut(PSL(3,3))

Table 1. 3 degree G-based symmetry diagram of order $2p^mq^n$ 表 1. 阶为 $2p^mq^n$ 的 3 度 G-基对称图

我们用 \mathbb{Z}_n 表示n 阶循环群, A_n 和 S_n 分别表示交错群和对称群。

 $(Aut(PSL(3,3)), S_4 \times S_7)$

本节的主要内容是给出一些重要的结论和例子。首先我们给出由 Tutte 于 1947 年确定的 3 度对称图的点稳定子群的结构,它为我们研究 3 度对称图奠定了基础。

引理2.1 ([7]): 设 Γ 是一个连通的 3 度 (G,s) - 弧传递图。则 $s \le 5$,并且 $(G_a, |G_a|, s)$ 满足表 2,其中 $\alpha \in V$ Γ.

Table 2. Point-stabilized subgroups of 3-degree symmetry maps 表 2. 3 度对称图的点稳定子群

 G_{234}^{2}

Aut(PSL(3,3))

S	1	2	3	4	5
G_{α}	$\mathbb{Z}_{_3}$	S_3	$S_3 \times S_2$	$S_{\scriptscriptstyle 4}$	$S_4 \times S_2$
$\left G_{\scriptscriptstyle\alpha}\right $	3	2×3	$2^2 \times 3$	$2^3 \times 3$	$2^4 \times 3$

设 G 是一个有限群,H 是 G 的子群。令 D 为 H 在 G 中的若干个形如 $HxH(x \notin H)$ 的双陪集之并。 定义群 G 上关于 H 和 D 的陪集(有向)图 $\Gamma = \text{Cos}(G,H,D)$ 如下: 顶点集 $V\Gamma = [G:H]$,即 H 在 G 中的所有右陪集之并,边集 $E\Gamma = \{\{Ha, Hda\} | a \in G, d \in D\}$ 。 陪集图有如下的性质。

引理 2.2 ([14]): 设 $\Gamma = Cos(G, H, D)$ 是群 G 关于 H 和 D 的陪集有向图,则

- 1) Γ 是点传递图,并且 $val(\Gamma) = |D|/|H|$;
- 2) Γ 是连通图当且仅当 $G = \langle D \rangle$;
- 3) Γ 是无向图当且仅当 $D = D^{-1}$;
- 4) Γ 是 G-弧传递的当且仅当 $D = Hx_iH(x_i \notin H)$ 是一个单个的双陪集。

陪集图通常用于构造一些图例,下面的 4 个例子是根据 3 度图的点稳定子群的结构以及陪集图的性质构造而成,可参看文献([1])和([10])。

例 2.3: 1) 设 G = PSL(2,13),则 G 有一个子群 $H \cong S_3$,且存在一个对合 x 使得 |HxH|/|H| = 3, $\langle H, x \rangle = G$ 。于是由引理 2.2 知陪集图 Cos(G, H, HxH)是一个阶为 182 的 3 度对称图,记为 NC_{182}^1 ,且 $Aut(NC_{182}^1) \cong PSL(2,13)$ 。

2) 设 $G = \operatorname{PGL}(2,13)$,则 G 有一个子群 $H \cong S_3 \times S_2$,且存在一个对合 x 使得 $\left| HxH \right| / \left| H \right| = 3$, $\left\langle H,x \right\rangle = G$ 。

- 于是由引理 2.2 知陪集图 Cos(G, H, HxH) 是一个阶为 182 的 3 度对称图,记为 NC_{182}^2 ,且 $Aut(NC_{182}^2) \cong PGL(2,13)$ 。
- **例 2.4:** 1)设 G = PSL(2,23),则 G 有一个子群 $H \cong S_3 \times S_2$,且存在和一个对合 x 使得 |HxH|/|H| = 3, $\langle H, x \rangle = G$ 。 于是由引理 2.2 知陪集图 Cos(G, H, HxH) 是一个阶为 506 的 3 度对称图,记为 NC_{506} ,且 $Aut(NC_{506}) \cong PSL(2,23)$ 。
- 2) 设 $G = \operatorname{PGL}(2,23)$,则 G 有一个子群 $H \cong S_4$,且存在和一个对合 x 使得 |HxH|/|H| = 3 且 $\langle H, x \rangle = G$ 。于 是 由 引 理 2.2 知 陪 集 图 $\operatorname{Cos}(G,H,HxH)$ 是一个 阶 为 506 的 3 度 对 称 图, 记 为 C_{506} , 且 $\operatorname{Aut}(C_{506}) \cong \operatorname{PGL}(2,23)$ 。
- **例 2.5**: 设 G = PSL(2,47),则 G 有一个子群 $H \cong S_4$ 和一个对合 x 使得 |HxH|/|H| = 3 且 $\langle H,x \rangle = G$ 。 于是由引理 2.2 知陪集图 $\cos(G,H,HxH)$ 是一个阶为 2162 的 3 度对称图,记为 NC_{2162} ,且其全自同构群为 PSL(2,23) 。
 - **例 2.6**: 1) Levi 图 NC_{30} 是唯一的一个阶为 30 的 3 度对称图,它是 5-正则的二部图且 $Aut(NC_{30}) \cong S_6.\mathbb{Z}_2$ 。
 - 2) Smith-Biggs 图 NC_{102} 是唯一的一个阶为 102 的 3 度对称图,且 $Aut(NC_{102}) \cong PSL(2,17)$ 。
 - 3) Coxter-Frucht 图 C_{110} 是唯一的一个阶为 110 的 3 度对称图,且 $Aut(C_{110}) \cong PGL(2,11)$ 。
- 对于给定的较小群 G,利用 Magma ([15])软件计算包可以确定所有同构意义下的 G-弧传递图。通过 Magma ([15])直接计算,我们可得以下的 5 个例子。值得注意的是,在例子中所出现图,它们在同构意义下都是唯一的。
- **例 2.7:** 1) 设 $G = A_5$,则 G 有一个子群 $H \cong \mathbb{Z}_3$,由 Magma([15])可知,存在一个阶为 20 的 3 度对 称图,记为 \mathcal{G}_{20}^1 ,且 Aut $\left(\mathcal{G}_{20}^1\right) \cong S_5$ 。
- 2) 设 $G = S_5$,则G有一个子群 $H \cong S_3$,于是通过 Magma ([15])计算,存在一个阶为 20 的 3 度对称图,记为 \mathcal{G}^2_{20} ,且 Aut $\left(\mathcal{G}^2_{20}\right) \cong S_5 \times \mathbb{Z}_2$ 。
- **例 2.8:** 设 $G = \operatorname{PSL}(2,7)$,则 G 有一个子群 $H \cong S_3$ 或 \mathbb{Z}_3 ,于是存在两个 3 度对称图,分别记为 \mathcal{G}_{28}^1 和 \mathcal{G}_{56}^1 ,它们的阶分别为 28 和 56,且 $\operatorname{Aut}(\mathcal{G}_{28}^1) \cong \operatorname{PGL}(2,7)$, $\operatorname{Aut}(\mathcal{G}_{56}^1) \cong \operatorname{PGL}(2,7)$ 。
 - **例 2.9:** 设 G = PGL(2,7),则 G 有一个子群 $H \cong S_3 \times S_2$ 或 S_3 。通过 Magma ([15])计算可得:
 - 1) 如果 $H \cong S_3 \times S_2$,则存在一个阶为 28 的 3 度对称图,记为 \mathcal{G}^2_{28} ,且 $\operatorname{Aut}(\mathcal{G}^2_{28}) \cong \operatorname{PGL}(2,7)$ 。
- 2) 如果 $H \cong S_3$,则存在两个阶为 56 的 3 度对称图,分别记为 \mathcal{G}_{56}^2 和 \mathcal{G}_{56}^3 ,且 $\operatorname{Aut}(\mathcal{G}_{56}^2) \cong \operatorname{PGL}(2,7)$, $\operatorname{Aut}(\mathcal{G}_{56}^3) \cong \operatorname{PGL}(2,7) \times \mathbb{Z}_2$ 。
- **例 2.10:** 1) 设 $G = \operatorname{PGL}(2,25)$,则 G 有一个子群 $H \cong S_4$,通过 Magma ([15])计算,存在一个阶为 650 的 3 度对称图,记为 \mathcal{G}_{650}^1 ,且 $\operatorname{Aut}(\mathcal{G}_{650}^1) \cong \operatorname{Aut}(\operatorname{PSL}(2,25))$ 。
- 2) 设 G = Aut(PSL(2,25)),则 G 有一个子群 $H \cong S_4 \times S_2$,由 Magma ([15])可知,存在一个阶为 650 的 3 度对称图,记为 \mathcal{G}_{650}^2 ,且 $\text{Aut}(\mathcal{G}_{650}^2) \cong \text{Aut}(\text{PSL}(2,25))$ 。
- **例 2.11:** 1) 设 G = PSL(3,3),则 G 有一个子群 $H \cong S_4$,存在一个阶为 234 的 3 度对称图,记为 \mathcal{G}^1_{234} ,且 $Aut(\mathcal{G}^1_{234}) \cong Aut(PSL(3,3))$ 。
- 2) 设 G = Aut(PSL(3,3)),则 G 有一个子群 $H \cong S_4 \times S_2$,故由 Magma ([15])计算,存在一个阶为 234 的 3 度对称图,记为 \mathcal{G}^2_{234} ,且 $\text{Aut}(\mathcal{G}^2_{234}) \cong \text{Aut}(\text{PSL}(3,3))$ 。

下面的引理是([16],引理 2.5])的一个特例,它略微改进了 Praeger 的结论([17],定理 4.1])。

引理 2.12 ([16]): 设 Γ 是一个连通的奇素数度的 G-弧传递图, $G \le Aut\Gamma$ 有一个非传递的正规子群 N

在 VΓ 上至少有两个轨道。则下面的陈述成立:

- 1) $N \in V\Gamma$ 上半正则, $G/N \leq \operatorname{Aut}(\Gamma_N)$, $\Gamma_N \in G/N$ -弧传递的,并且 $\Gamma \in \Gamma_N$ 的正规 N-覆盖。
- 2) $\Gamma \in (G,s)$ -弧传递的当且仅当 $\Gamma_N \in (G/N,s)$ -弧传递的,其中 $1 \le s \le 5$ 或s = 7。
- 3) $G_{\alpha} \cong (G/N)_{\delta}$, $\not\exists \vdash \alpha \in V\Gamma$, $\delta \in V\Gamma_N$.

3. 定理 1.1 的证明

为了完整的证明定理 1.1,我们先证明以下两个引理,第一个引理分类了一类单群。

引理 3.1: 设 T 是一个非交换单群且满足 $|T||2^5 \cdot 3 \cdot r^m \cdot s^n$,且 $3r^m s^n ||T|$,其中 r < s 为素数, $m, n \ge 1$ 。则下列之一成立,其中 $|\pi(T)|$ 表示 |T| 的所有素因子的个数。

1) 如果 $|\pi(T)|=3$,则(T,|T|)满足表 3。

Table 3. Single group T with 3 prime factors 表 3. 含有 3 个素因子的单群 T

T	T	T	T
A_{5}	$2^2\cdot 3\cdot 5$	$A_{\!\scriptscriptstyle 6}$	$2^3 \cdot 3^2 \cdot 5$
PSL(2,7)	$2^3\cdot 3\cdot 7$	PSL(2,8)	$2^3\cdot 3^2\cdot 7$
PSU(3,3)	$2^5 \cdot 3^3 \cdot 7$	PSL(3,3)	$2^4 \cdot 3^3 \cdot 13$
PSL(2,17)	$2^4 \cdot 3^2 \cdot 17$		

2) 如果 $|\pi(T)| = 4$,则(T,|T|)满足表 4。

Table 4. Single group T with 4 prime factors 表 4. 含有 4 个素因子的单群 T

T	T	T	T
PSL(2,11)	$2^2 \cdot 3 \cdot 5 \cdot 11$	PSL(2,13)	$2^2 \cdot 3 \cdot 7 \cdot 13$
PSL(2,16)	$2^4 \cdot 3 \cdot 5 \cdot 17$	PSL(2,23)	$2^3 \cdot 3 \cdot 11 \cdot 23$
PSL(2,25)	$2^3 \cdot 3 \cdot 5^2 \cdot 13$	PSL(2,31)	$2^5 \cdot 3 \cdot 5 \cdot 31$
PSL(2,32)	$2^5 \cdot 3 \cdot 11 \cdot 31$	PSL(2,47)	$2^4 \cdot 3 \cdot 23 \cdot 47$
PSL(2,49)	$2^4 \cdot 3 \cdot 5^2 \cdot 7^2$	PSL(2,97)	$2^5 \cdot 3 \cdot 7^2 \cdot 97$
PSL(3,5)	$2^5 \cdot 3 \cdot 5^3 \cdot 31$		

证明:因为 $3r^m s^n ||T|$,所以 $3 \le |\pi(T)| \le 4$,因此T满足([18],定理 I)。

如果 $|\pi(T)|=3$,则 r=2 或 3, $s\geq 5$,因此 T 是一个 $\{2,3,s\}$ -群。如果 r=2,则 $|T||2^{5+m}\cdot 3\cdot s^n$,于是 $3^2 \nmid |T|$,故由([18],表 1)可知: $T\cong A_5$ 或 PSL(2,7),此时, $|T|=2^2\times 3\times 5$ 或 $2^3\times 3\times 7$ 。如果 r=3,则 $|T||2^5\cdot 3^{m+1}\cdot s^n$,故 $2^6 \nmid |T|$ 。再由([18],表 1)可得: $T\cong A_5$, A_6 ,PSL(2,7) ,PSL(2,8) ,PSU(3,3) ,PSL(3,3) 或 PSL(2,17) 。

如果 $|\pi(T)|$ =4,由 $|T||2^5 \cdot 3 \cdot r^m \cdot s^n$ 可知 3 < r < s,因此 T 是一个 $\{2,3,r,s\}$ -群,于是由([18],定理 I)可知:T满足([18],表 2)或者T同构于单群PSL(2,q),其中q > 3为一个素数的方幂。如果T满足([18],表 2),则通过检查它们的阶可得: $T \cong PSL(3,5)$,此时 $|T| = 2^5 \cdot 3 \cdot 5^3 \cdot 31$ 。如果 $T \cong PSL(2,q)$,则由([18],

定理 3.2 和引理 3.4(2),3.5(2))可知: 要么 $q \in \left\{5^2,7^2,2^4,2^5\right\}$,要么 $q \geq 11$ 是一个素数。

假设 $T \cong PSL(2,q)$, 其中 $q \ge 11$ 是一个素数,则 $|T| = \frac{1}{2}q(q+1)(q-1)$ 。注意到, 3 < r < s,因此,

$$\frac{1}{2}(q+1)(q-1)\left|2^5\cdot 3\cdot r^m,\right|$$

即

$$\frac{q+1}{2} \cdot \frac{q-1}{2} \left| 2^4 \cdot 3 \cdot r^m \right|.$$

因为 $\left(\frac{q+1}{2},\frac{q-1}{2}\right)$ =1,所以 $\left(\frac{q+1}{2}\right)$ r^m 或 $\left(\frac{q-1}{2}\right)$ r^m ,即 $\left(\frac{q-1}{2}\right)$ 2⁴·3或 $\left(\frac{q+1}{2}\right)$ 2⁴·3。由此可得:q=11,13,17,23,31,47 或 97。通过检查它们对应单群 PSL(2,q)的阶可知:满足条件的q为 11,13,23,31,47,97。□

假设 p < q 为素数, Γ 是一个连通的阶为 $2p^mq^n$ 的 3 度 G-弧传递图,其中 $G \le \operatorname{Aut}\Gamma$, $m,n \ge 1$ 。设 N 是G的一个极小正规子群,则 $N = T^d$,其中 T 是一个单群且 $d \ge 1$ 。令 $\alpha \in V\Gamma$ 。

引理 3.2: 应用上面的符号说明。如果 N 是非交换的,则 d=1。

证明:反证法。假设 $d \ge 2$,则由 $N = T^d$ 可知: $|N| \nmid 2p^m q^n$ 。如果 $N \in V\Gamma$ 上至少有 3 个轨道,则由 引理 2.12 可知, $N \in V\Gamma$ 上半正则,于是 $|N| ||V\Gamma|$,注意到 $|V\Gamma| = 2p^m q^n$,矛盾。故 $N \in V\Gamma$ 上至多有 2 个轨道。令 $N = T_1 \times T_2 \times \cdots \times T_d$,其中 $T_i \cong T (i = 1, 2, \cdots, d)$ 。

假设 N 在 $V\Gamma$ 上传递。由 $1 \neq N_{\alpha} \triangleleft G_{\alpha}$ 且 Γ 是连通图可得: $1 \neq N_{\alpha}^{\Gamma(\alpha)} \triangleleft G_{\alpha}^{\Gamma(\alpha)}$ 。因此, $N_{\alpha}^{\Gamma(\alpha)}$ 是传递的且 Γ 是 N-弧传递的。如果 T_1 在 $V\Gamma$ 上传递,则由([12],定理 4.2A)可知:中心化子 $C_N(T_1)$ 在 $V\Gamma$ 上半正则,从而 T_2 在 $V\Gamma$ 上半正则,这与 $|T_2|$ 不能整除 $|V\Gamma| = 2p^mq^n$ 相矛盾。如果 T_1 在 $V\Gamma$ 上至少有 3 个轨道,则由 引理 2.12 可知: T_1 在 $V\Gamma$ 上半正则,矛盾。因此, T_1 在 $V\Gamma$ 上恰好有 2 个轨道,记为 U 和 W。因为 $T_1 \triangleleft N$,故 U 和 W 构成 $V\Gamma$ 上的一个 N-不变块系,于是 N_U 在 N 中的指数为 2。但是, $N = T^d$ 没有指数为 2 的子群,矛盾。

假设 N 在 $V\Gamma$ 上恰有两个轨道,记为 Δ_1 , Δ_2 。此时, Γ 是一个二部图,其二部分别为 Δ_1 和 Δ_2 。令 $G^+ = G_{\Delta_1} = G_{\Delta_2}$ 。如果 G^+ 作用在 Δ_1 上是非忠实的,则由([19],引理 5.2)可知: Γ 是一个完全二部图,于是 $\Gamma = K_{3,3}$,因此, $|V\Gamma| = 6$,矛盾。如果 G^+ 作用在 Δ_1 上是忠实的,则 $N \leq G^+$ 可以看作 Δ_1 上的一个传递置换群。如果 T_1 在 Δ_1 上传递,则由([12],定理 4.2A)可知: T_2 在 Δ_1 上半正则,故 $|T_2||p^mq^n$,矛盾。因此, T_1 在 Δ_1 上至少有 2 个轨道,故由([20],引理 3.2)可知: T_1 在 Δ_1 上半正则,矛盾。 \Box

下面给出定理 1.1 的完整证明。

定理 1.1 的证明:设 Γ 是一个连通的阶为 $2p^mq^n$ 的 3 度对称 G-基图,则 G 在 $V\Gamma$ 上是拟本原的或者二部拟本原的,其中 p < q 为素数, $G \le \operatorname{Aut}\Gamma$, $m,n \ge 1$ 。设 N 是 G 的一个极小正规子群,则 $N = T^d$,其中 T 是一个单群且 $d \ge 1$ 。令 $\alpha \in V\Gamma$,下面我们分两种情形来完成定理 1.1 的证明。

情形 1: 假设 $G \times V\Gamma$ 上是拟本原的。

此时 N 在 $V\Gamma$ 上是传递的。如果 N 是一个交换群,则 N 在 $V\Gamma$ 上正则,从而 $\left|T\right|^d = \left|N\right| = 2p^mq^n$,矛盾。因此 N 是非交换的,于是由引理 3.2 可知: d=1,从而 N=T 。进一步,由于 $T_\alpha \neq 1$,则 Γ 是 T-弧传递的,因此 T_α 满足引理 2.1,于是 $\left|T_\alpha\right|$ 48。由 T 的传递性可得: $\left|T\right| = \left|V\Gamma\right| \cdot \left|T_\alpha\right|$ 整除 $2^5 \cdot 3 \cdot p^m \cdot q^n$ 。另一方面,由于 Γ 是 T-弧传递的,则 $3\left\|T_\alpha\right\|$,于是 $3p^mq^n\left\|T\right\|$ 。故 T 满足引理 3.1 。

假设 $|\pi(T)|=3$,则T和 (p^m,q^n) 满足下表 5。

Table 5. Single group T with three prime factors and its corresponding (p^m, q^n)

表 5. 含有 3 个素因子的单群 T 及其对应的 (p^m,q^n)

T	$A_{\scriptscriptstyle 5}$	$A_{_{6}}$	PSL(2,7)	PSL(2,8)	PSU(3,3)	PSL(3,3)	PSL(2,17)
(p^m,q^n)	(2,5)	(3,5)	(2,7)或(2 ² ,7)	(3,7)	(3 ² ,7)	(3 ² ,13)	(3,17)

如果 $T \cong A_5$,则 $|T_\alpha| = |T|/|V\Gamma| = 3$,从而 $T_\alpha \cong \mathbb{Z}_3$,故由例 2.7 可知 $\Gamma \cong \mathcal{G}_{20}^1$ 。如果 $T \cong A_6$, PSL(2,8) 或 PSL(2,17) ,则 $|V\Gamma| = 2pq$,从而由([10])可知:只有当 $T \cong PSL(2,17)$ 时才存在满足条件的图 Γ ,此时 T 有一个子群 $T_\alpha \cong S_4$ 。由例 2.6 可知 $\Gamma \cong NC_{102}$ 。如果 $T \cong PSL(2,7)$,且 $\left(p^m,q^n\right) = (2,7)$ 或 $\left(2^2,7\right)$,则 $|T_\alpha| = 6$ 或 3,从而由引理 2.1 可得, $T_\alpha \cong S_3$ 或 \mathbb{Z}_3 。由例 2.8 可知 $\Gamma \cong \mathcal{G}_{28}^1$ 或 \mathcal{G}_{56}^1 。如果 $T \cong PSU(3,3)$,则 $|T_\alpha| = 2^4 \cdot 3$,但是,PSU(3,3) 没有子群同构于 $S_4 \times S_2$,这与引理 2.1 相矛盾。如果 $T \cong PSL(3,3)$,则 $|T_\alpha| = 2^3 \cdot 3$ 且 $T_\alpha \cong S_4$ 。由例 2.11 可知: $\Gamma \cong \mathcal{G}_{334}^1$ 。

假设 $|\pi(T)|=4$,则T和 (p^m,q^n) 满足下表 6。

Table 6. Single group T with four prime factors and their corresponding (p^m, q^n)

表 6. 含有 4 个素因子的单群 T 及其对应的 (p^m,q^n)

T	PSL(2,11)	PSL(2,13)	PSL(2,16)	PSL(2,23)	PSL(2,25)	PSL(2,31)
(p^m,q^n)	(5,11)	(7,13)	(5,17)	(11,23)	$(5^2,13)$	(5,31)
T	PSL(2,32)	PSL(2,47)	PSL(2,49)	PSL(2,97)	PSL(3,5)	
(p^m,q^n)	(11,31)	(23,47)	$(5^2,7^2)$	$(7^2,97)$	$(5^3,31)$	

如果 $T \cong \mathrm{PSL}(2,q)$,其中 $q \in \{11,13,16,23,31,32,47\}$,则 $|V\Gamma| = 2pq$,由([10])可知,只有当 q = 13 , 23 或 47 时才存在满足条件的图 Γ ,进一步,由例 2.3,2.4 和 2.5 可得, $\Gamma \cong NC_{182}^1$, NC_{506} 或 NC_{2162} 。如果 $T \cong \mathrm{PSL}(2,97)$ 或 $\mathrm{PSL}(3,5)$,则 $|T_{\alpha}| = 2^4 \cdot 3$ 。但是, $\mathrm{PSL}(2,97)$ 和 $\mathrm{PSL}(3,5)$ 都没有子群同构于 $S_4 \times S_2$, 这与引理 2.1 相矛盾。如果 $T \cong \mathrm{PSL}(2,25)$ 或 $\mathrm{PSL}(2,49)$,则 $|T_{\alpha}| = 2^2 \cdot 3$ 或 $2^3 \cdot 3$,此时 $T_{\alpha} \cong S_3 \times S_2$ 或 S_4 ,由 Magma ([15])计算可知,此时不存在满足条件的图 Γ 。

情形 2: 假设 G 在 $V\Gamma$ 上是二部拟本原的。

此时,G有一个极小正规子群 $N=T^d$ 在 $V\Gamma$ 上恰有两个轨道,分别记为 Δ_1 和 Δ_2 。于是, Γ 是一个二部图,并且其二部分别为 Δ_1 和 Δ_2 。令 $G^+=G_{\Delta_1}=G_{\Delta_2}$,则 $N\leq G^+$, $\left|G:G^+\right|=2$, $G_\alpha=G_\alpha^+$ 。如果 N 是交换的,则 N 在 Δ_1 上正则,从而 $\left|T\right|^d=\left|N\right|=p^mq^n$,矛盾。因此 N 是非交换的。由引理 3.2 可知: N=T 是一个非交换单群。如果 G^+ 作用在 Δ_1 或 Δ_2 上是非忠实的,则由([19],引理 5.2)可知: Γ 是一个完全二部图,于是 $\Gamma=K_{3,3}$ 。故, $\left|V\Gamma\right|=6$,矛盾。假设 G^+ 作用在 Δ_1 和 Δ_2 上是忠实的,则由([21],定理 1.5)可知下列之一成立:

- (a) G^+ 在 Δ_i (i = 1, 2) 上是拟本原的;
- (b) G^+ 有两个正规子群 M_1 , M_2 满足 $M_1\cong M_2$ 且它们在 $V\Gamma$ 半正则。进一步,群 $M_1\times M_2$ 在 Δ_i 上正则。

对于情形(b),有: $|M_1|^2 = |\Delta_i| = p^m q^n$,矛盾。下面考虑情形(a)。假设 G^+ 在 Δ_i 上是拟本原的,则 G^+ 有一个极小正规子群 T 且 T 是一个单群,于是由 O'Nan-Scott-Praeger 定理([17])可知: $\operatorname{soc}(G^+) = T$ 或 T^2 。如果 $\operatorname{soc}(G^+) = T^2$,则 G^+ 是全形单型,且 T 在 Δ_i 上正则。因此 $|T| = |\Delta_i| = p^m q^n$,矛盾。故 $\operatorname{soc}(G^+) = T$ 。进一步,如果 T 不是 G 的唯一极小正规子群,则由 $G = G^+$. \mathbb{Z}_2 可知 $G = G^+ \times \mathbb{Z}_2$,于是 G 的正规子群 \mathbb{Z}_2 在 $V\Gamma$ 上有 $p^m q^n$ 个轨道,这与 G 在 $V\Gamma$ 上是二部拟本原的相矛盾。故,T 是 G 的唯一极小正规子群,即 G 是几乎单的且其基柱 $\operatorname{soc}(G) = T$ 。令 G = T.o, $G^+ = T.o'$,其中 $\mathbb{Z}_2 \le o \le \operatorname{Out}(T)$ 且 |o:o'| = 2。由于 $T_\alpha \le G_\alpha$,于是由引理 2.1 可知 $|T_\alpha|$ 48,因此 $|T| = |\Delta_1| \cdot |T_\alpha|$ 整除 $2^5 \cdot 3 \cdot p^m \cdot q^n$ 。另一方面,由于 $T_\alpha \ne 1$,则 $3 \|T_\alpha\|$,3 $p^m q^n \|T\|$ 。故 T 满足引理 3.1。

假设 $|\pi(T)|=3$ 。此时 T 和 (p^m,q^n) 满足表 5。如果 $T \cong A_5$,则由 Altas ([22])可知 Out $(A_5)=\mathbb{Z}$,。因 此 $G^+=A_5$, $G=S_5$,且 $\left|G_{\alpha}\right|=\left|G\right|/\left|V\Gamma\right|=6$,于是由引理 2.1 可知, $G_{\alpha}\cong S_3$ 。故由例 2.7 可知 $\Gamma\cong \mathcal{G}_{20}^2$ 。如 果 $T \cong A_6$,则 $Out(A_6) = \mathbb{Z}_2^2$,于是 $G = S_6$ 或 $S_6.\mathbb{Z}_2$ 。若 $G = S_6$,则 $|G_a| = 24$,于是 $G_\alpha \cong S_4$,由 Magma ([15]) 计算可知:此时不存在满足条件的图 Γ 。若 $G = S_6.\mathbb{Z}_2$,则 $|G_\alpha| = 48$,于是 $G_\alpha \cong S_4 \times S_2$,由例 2.6 可知 $\Gamma \cong NC_{30}$ 。如果 $T \cong PSL(2,7)$,则 $Out(PSL(2,7)) = \mathbb{Z}_2$,且 $(p^m,q^n) = (2,7)$ 或 $(2^2,7)$ 。于是 G = PGL(2,7), 并且 G 有两个子群分别同构于 $S_3 \times S_2$ 和 S_3 。故由例 2.9 可知: $\Gamma \cong \mathcal{G}^2_{28}$, \mathcal{G}^2_{56} ,或 \mathcal{G}^3_{56} 。如果 $T \cong PSL(2,8)$, 则由 Altas ([6])可知 Out(T) = \mathbb{Z}_3 ,此时与 $\mathbb{Z}_2 \le o \le Out(T)$ 且 |o:o'| = 2 相矛盾。如果 $T \cong PSU(3,3)$,则 Out $(T) = \mathbb{Z}_2$,于是 G = Aut(PSU(3,3)),此时 $|G_a| = 2^5 \cdot 3$,这与引理 2.1 相矛盾。如果 $T \cong PSL(3,3)$,则 Out $(T) = \mathbb{Z}_2$,从而 G = Aut(PSL(3,3)),此时 $G_\alpha \cong S_4 \times S_2$,由例 2.11 可知 $\Gamma \cong \mathcal{G}^2_{234}$ 。如果 $T \cong \text{PSL}(2,17)$, 则 $Out(T) = \mathbb{Z}_2$, 故 G = PGL(2,17) , 此时 $|G_a| = 48$, 但是, PGL(2,17) 不存在 48 阶的子群,矛盾。 假设 $|\pi(T)|=4$ 。此时 T 和 (p^m,q^n) 满足表 6。如果 $T \cong PSL(2,31)$,PSL(2,97)或PSL(3,5),则 Out(T) = \mathbb{Z}_2 , 于是 G = PGL(2,31) , PGL(2,97) 或 PGL(3,5) 。此时, $|G_{\alpha}| = |G|/|V\Gamma| = 2^5 \cdot 3$,这与引理 2.1 相矛盾。如果 $T \cong PSL(2,32)$,则 $Out(PSL(2,32)) = \mathbb{Z}_5$,此时与 $\mathbb{Z}_2 \le o \le Out(T)$ 且[o:o'] = 2相矛盾。 如果 $T \cong PSL(2,16)$ 或 PSL(2,49),则 $Out(T) = \mathbb{Z}_2^2$,于是 $G = T.\mathbb{Z}_2$,或 Aut(T)。若 $G = T.\mathbb{Z}_2$,则 $|G_{\alpha}| = 2^4 \cdot 3$, 但是,G 没有子群同构于 $S_4 \times S_2$,这与引理 2.1 相矛盾。若 $G = \operatorname{Aut}(T)$,则 $|G_\alpha| = 2^5 \cdot 3$,这与引理 2.1 相 矛盾。如果 $T \cong \operatorname{PSL}(2,47)$,则 $\operatorname{Out}(T) = \mathbb{Z}_2$,于是 $G = \operatorname{PGL}(2,47)$, $|G_a| = 2^4 \cdot 3$,然而,G 没有子群同 构于 $S_4 \times S_7$, 矛盾。如果 $T \cong PSL(2,11)$, PSL(2,13)或 PSL(2,23), 则 $Out(T) = \mathbb{Z}_2$, 故 G = PGL(2,11), PGL(2,13) 或 PGL(2,23),进一步可得, $G_{\alpha} \cong S_3 \times S_2$ 或 S_4 。故由例 2.3,2.4 和 2.6 可知: $\Gamma \cong C_{110}$, NC_{182}^2 或 C_{506} 。如果 $T \cong PSL(2,25)$,则 $Out(PSL(2,25)) = \mathbb{Z}_2^2$,于是 $G = T.\mathbb{Z}_2 \cong PGL(2,25)$ 或 Aut(T) 。因此, $G_{\alpha} = S_4$ 或 $S_4 \times S_2$ 。 由例 2.10 可知 $\Gamma \cong \mathcal{G}_{650}^1$ 或 \mathcal{G}_{650}^2 。 \square

基金项目

国家自然科学基金资助项目(80031010061)资助。

参考文献

- [1] Conder, M.D.E. and Dobcsanyi, P. (2002) Trivalent Symmetric Graphs on up to 768 Vertices. *Journal of Combinatorial Mathematics and Combinatorial Computing*, **40**, 41-63.
- [2] Chao, C.Y. (1971) On the Classification of Symmetric Graphs with a Prime Number of Vertices. *Transactions of the American Mathematical Society*, **158**, 247-256. https://doi.org/10.2307/1995785

- [3] Cheng, Y. and Oxley, J. (1987) On Weakly Symmetric Graphs of Order Twice a Prime. *Journal of Combinatorial Theory*, Series B, 42, 196-211. https://doi.org/10.1016/0095-8956(87)90040-2
- [4] Wang, R.J. and Xu, M.Y. (1993) A Classification of Symmetric Graphs of Order 3*p. Journal of Combinatorial Theory*, Series B, **58**, 197-216. https://doi.org/10.1006/jctb.1993.1037
- [5] Praeger, C.E., Wang, R.J. and Xu, M.Y. (1993) Symmetric Graphs of Order a Product of Two Distinct Primes. *Journal of Combinatorial Theory*, Series B, 58, 299-318. https://doi.org/10.1006/jctb.1993.1046
- [6] Praeger, C.E. and Xu, M.Y. (1993) Vertex-Primitive Graphs of Order a Product of Two Distinct Primes. *Journal of Combinatorial Theory*, Series B, 59, 245-266. https://doi.org/10.1006/jctb.1993.1068
- [7] Tutte, W.T. (1947) A Family of Cubical Graphs. *Mathematical Proceedings of the Cambridge Philosophical Society*, 43, 459-474. https://doi.org/10.1017/S0305004100023720
- [8] Du, S.F. and Wang, F.R. (2005) Arc-Transitive Cubic Cayley Graphs on PSL(2,p). Science in China, 48, 1927-1308.
- [9] Feng, Y.Q., Kwak, J.H. and Wang, K.S. (2005) Classifying Cubic Symmetric Graphs of Order 8p or 8p². European Journal of Combinatorics, 26, 1033-1052. https://doi.org/10.1016/j.ejc.2004.06.015
- [10] Zhou, J.X. and Feng, Y.Q. (2010) Cubic Vertex-Transitive Graphs of Order 2pq. Journal of Graph Theory, 65, 285-302. https://doi.org/10.1002/jgt.20481
- [11] Biggs, N. (2004) Algebraic Graph Theory. Cambridge University Press, Cambridge.
- [12] Dixon, J.D. and Mortimer, B. (1997) Permutation Groups. Spring-Verlag, New York. https://doi.org/10.1007/978-1-4612-0731-3
- [13] 徐明曜. 有限群导引(上)[M]. 北京: 科学出版社, 1999.
- [14] 徐明曜. 有限群导引(下)[M]. 北京: 科学出版社, 1999.
- [15] Bosma, W., Cannon, J. and Playoust, C. (1997) The MAGMA Algebra System I: The User Language. *Journal of Symbolic Computation*, **24**, 235-265. https://doi.org/10.1006/jsco.1996.0125
- [16] Li, C.H. and Pan, J.M. (2008) Finite 2-Arc-Transitive Abelian Cayley Graphs. *European Journal of Combinatorics*, 29, 148-158. https://doi.org/10.1016/j.ejc.2006.12.001
- [17] Praeger, C.E. (1992) An O'Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc-Transitive Graphs. *Journal of the London Mathematical Society*, 47, 227-239. https://doi.org/10.1112/jlms/s2-47.2.227
- [18] Huppert, B. and Lempken, W. (2000) Simple Groups of Order Divisible by at Most Four Primes. *Izvestiya Gomel'skogo Gosudarstvennogo Universiteta Im. F. Skoriny*, **16**, 64-75.
- [19] Giudici, M., Li, C.H. and Praeger, C.E. (2003) Analyzing Finite Locally s-Arc-Transitive Graphs. *The Transactions of the American Mathematical Society*, **356**, 291-317. https://doi.org/10.1090/S0002-9947-03-03361-0
- [20] Lu, Z.P., Wang, C.Q. and Xu, M.Y. (2004) On Semisymmetric Cubic Graphs of Order 6p². Science in China Series A, 47, 1-17.
- [21] Li, C.H., Praeger, C.E., Venkatesh, A. and Zhou, S.M. (2014) Finite Locally-Quasiprimitive Graphs. Algebra Colloquium, 21, 627-634. https://doi.org/10.1142/S1005386714000571
- [22] Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A. and Wilson, R.A. (1985) Atlas of Finite Groups. Oxford University Press, London/New York.