The 1-Good-Neighbor Connectivity and Diagnosability of Crossed Cubes

Xiaolei Ma¹, Shiying Wang^{1,2*}, Zhenhua Wang¹

¹School of Mathematics and Information Science, Henan Normal University, Xinxiang Henan

²Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, Xinxiang Henan

Email: 954631457@qq.com, *wangshiying@htu.edu.cn, zhwang@htu.cn

Received: May 4th, 2016; accepted: May 23rd, 2016; published: May 26th, 2016

Copyright © 2016 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Connectivity and diagnosability are important parameters in measuring the fault diagnosis of multiprocessor systems. In 2012, Peng *et al.* proposed a new measure for fault diagnosis of the system, which is called g-good-neighbor diagnosability that restrains every fault-free node containing at least g fault-free neighbors. The n-dimensional crossed cube is an important variant of the hypercube. In this paper, we prove that the 1-good-neighbor connectivity of crossed cube is 2n-2 for $n \ge 4$, and the 1-good-neighbor diagnosability of crossed cube is 2n-1 under the PMC model for $n \ge 4$ and the MM* model for $n \ge 5$.

Keywords

Interconnection Network, Graph, Diagnosability, Crossed Cube

交叉立方体的1好邻连通度和诊断度

马晓蕾1,王世英1,2*,王贞化1

1河南师范大学, 数学与信息科学学院, 河南 新乡

²河南师范大学,河南省大数据统计分析与优化控制工程实验室,河南 新乡

Email: 954631457@qq.com, *wangshiying@htu.edu.cn, zhwang@htu.cn

*通讯作者。

收稿日期: 2016年5月4日: 录用日期: 2016年5月23日: 发布日期: 2016年5月26日

摘要

连通度和诊断度是度量多处理器系统故障诊断能力的重要参数。2012年,Peng等提出了一个新的系统故障诊断方法,称为g好邻诊断度,它限制每个非故障顶点至少有g个非故障邻点。n维交叉立方体是超立方体的一个重要变形。本文证明了交叉立方体的1好邻连通度是2n-2 ($n \ge 4$),又证明了交叉立方体在PMC模型下的1好邻诊断度是2n-1 ($n \ge 4$)和在MM*模型下的1好邻诊断度是2n-1 ($n \ge 5$)。

关键词

互连网络, 图, 诊断度, 交叉立方体

1. 引言

连通度和诊断度是度量多处理器系统故障诊断能力的重要参数。它们是互联网络中热门的研究课题之一。通常我们把互联网络用图来表示,其中顶点表示处理器,边表示两处理器之间的链路。为了保证计算机系统的可靠性,系统中的故障处理器应该被诊断出来并被非故障处理器替换。Preparata 等首次提出了系统级故障诊断模型,称为 PMC 模型[1]。它是通过两个相邻的处理器之间相互测试来完成系统的诊断。Maeng 和 Malek 提出了 MM*模型[2]。在这种模型下,一个顶点分别给它相邻的两个顶点发出相同的任务,然后比较它们反馈的结果。传统的诊断度允许点的邻点全为故障点,但是在大型多处理器系统中这种故障出现的概率极小。因此 Lai 等提出了网络的条件诊断度[3],它限制系统中任意一个处理器至少与一个非故障处理器相邻。2012 年,Peng 等通过在系统中限制每个非故障顶点都至少有 g 个非故障邻点,提出了网络的 g 好邻诊断度[4],并且证明了超立方体在 PMC 模型下的 g 好邻诊断度是 $2^g(n-g)+2^g-1(0\leq g\leq n-3)$ 。原军等在文[5]中证明了 k 元 n 立方体在 PMC 模型和 MM*模型下的 g 好邻诊断度 不超过条件诊断度。因此,研究网络的 1 好邻诊断度也是很有意义的。本文首先证明了交叉立方体的 1 好邻连通度是 $2n-2(n\geq 4)$ 。然后,我们又证明了交叉立方体在 PMC 模型下的 1 好邻诊断度是 $2n-1(n\geq 4)$ 和在 MM*模型下的 1 好邻诊断度是 $2n-1(n\geq 4)$ 和在 MM*模型下的 1 好邻诊断度是 $2n-1(n\geq 4)$ 和在 MM*模型下的 1 好邻诊断度是 $2n-1(n\geq 4)$

2. 预备知识

设 G = (V, E) 是一个无向简单图,其中 V = V(G) , E = E(G) 分别表示图 G 的顶点集和边集。对于任意的非空顶点子集 $V' \subset V$,以 V' 为顶点集,以两端点均在 V' 中的边的全体为边集所组成的子图,称为 V' 在 G 中的导出子图,记作 G[V'] 。 $d_G(V)$ 是顶点 v 在 G 中关联的边的数目,表示 v 在 G 中的度。 $\delta(G)$ 表示 G 的顶点的最小度。对于任意顶点 $v \in V$,在 G 中与 v 相邻的所有顶点组成的集合称为 v 的邻集,记作 $N_G(v)$ 。若 S 是 G 的非空顶点子集,则 S 的邻集为 $N_G(S) = \bigcup_{v \in S} N_G(v) \setminus S$ 。图 G 的每一个顶点都恰好与边集 M 中的一条边关联,称 M 是 G 的一个完美匹配。对于任意的 $F \subset V$,若 $v \in V \setminus F$ 且 v 在 $G[V \setminus F]$ 中至少有 g 个邻点,则称 F 为 G 的 g 好邻故障集。如果 G - F 不连通且 G - F 的每个连通分支的最小度为 g ,则称 F 是一个 g 好邻割。G 的所有 g 好邻割中的最小顶点数称为 G 的 g 好邻连通度,记作 $\kappa^{(s)}(G)$ 。文中其它未定义而直接使用的符号和术语参见文献[7]。

在 PMC 模型中,相邻的处理器之间可以相互测试。图 G 中,对于任意的 $(u,v) \in E(G)$ 表示从 u 到 v 的测试,其中 u 是测试者而 v 是被测试者。若 u 是非故障点而 v 是故障点(或非故障点),则测试结果是 1(或 0)。若 u 是故障点,则测试结果不可靠。一个系统 G 的一个测试任务是每对相邻项点测试结果的集合。它可以用一个有向图 T=(V,L) 表示,其中 $(u,v) \in L$ 表示 $uv \in E(G)$ 。所有测试结果的集合称为系统 G 的症候,记作 σ 。一个症候是一个函数 $\sigma: L \mapsto \{0,1\}$ 。对两个不同的项点子集 $F_1, F_2 \subseteq V(G)$,若 $\sigma(F_1) \cap \sigma(F_2) = \emptyset$,则称 F_1 和 F_2 是可区分的,记(F_1 , F_2)为可区分的点对,否则,称 F_1 和 F_2 是不可区分的,记(F_1 , F_2)为不可区分的点对。

在 MM*模型下,与一个结点 w 相邻的两个结点 u, v 被分配一个相同的任务,再把测试结果返回给结点 w, w 再对这两个结点返回的结果进行比较。用 $(u,v)_w$ 来表示 w 比较 u, v 输出的比较结果,如果这两个结果是相同的,则 $(u,v)_w=0$; 否则, $(u,v)_w=1$ 。全部的测试结果叫做这个系统的比较症候,记作 σ^* 。假定三个结点都是非故障的,则测试结果为 0; 若 w 是非故障的,但 u, v 至少有一个是故障的,则比较结果为 1; 若 w 是故障的,则测试结果无论是 0 或 1 都是不可靠的。

定义 2.1 [5]: 在一个系统 G = (V, E) 中,对于任意两个不同的 g 好邻故障集 F_1 , F_2 ,其中 $|F_1| \le t$ 和 $|F_2| \le t$,若 F_1 , F_2 是可区分的,则 G 是 g 好邻条件 t-可诊断的。

定义 2.2 [5]: 使得 G 是 g 好邻条件 t-可诊断的最大值 t 称为 G 的 g 好邻诊断度,记作 $t_{e}(G)$ 。

n 维交叉立方体 CQ_n [8]有超立方体的正则性和相同的连通度。它是一个有 2^n 个顶点和 $n2^{n-1}$ 条边的 n 正则图。它包含长度为 $l\left(4 \le l \le 2^n\right)$ 的圈,直径为 $\left\lceil \frac{n-1}{2} \right\rceil$ 大约是超立方体的一半。n 维交叉立方体 CQ_n 的顶点 u 用长为 n 的二进制字符串表示,如 $u = u_{n-1}u_{n-2} \cdots u_1u_0$,其中 $u_i \in \{0,1\}$, $0 \le i \le n-1$, u_{n-1} 表示最高位, u_0 表示最低位。

定义 2.3: 两个二元序列 $x = x_1 x_2$, $y = y_1 y_2$ 称为相关对,记为 $x \sim y$,当且仅当 $(x,y) \in \{(00,00),(10,10),(01,11),(11,01)\}$ 。

n 维交叉立方体 CO_n 可以用递归定义表示:

定义 2.4: 1 维交叉立方体 CQ_1 是顶点标号分别为 0 和 1 的完全图(如图 1)。n 维交叉立方体 CQ_n ($n \ge 2$) 包含两个 n-1 维子交叉立方体 CQ_{n-1}^0 和 CQ_{n-1}^1 ,其中 CQ_{n-1}^0 和 CQ_{n-1}^1 各顶点的最高位分别是 0 和 1。设 $u=0u_{n-2}u_{n-3}\cdots u_0\in V\left(CQ_{n-1}^0\right)$, $v=1v_{n-2}v_{n-3}\cdots v_0\in V\left(CQ_{n-1}^0\right)$, 则 u 和 v 在 CQ_n 中相邻当且仅当

(1) 如果 n 是偶数, $u_{n-2} = v_{n-2}$;

(2)
$$\stackrel{\text{def}}{=} 0 \le i \le \left| \frac{n-1}{2} \right|$$
 | $\forall i \in [n]$, $u_{2i+1}u_{2i} \sim v_{2i+1}v_{2i}$.

我们称 CQ_{n-1}^0 与 CQ_{n-1}^1 之间的边为交叉边。显然,这些交叉边的集合是 CQ_n 的一个完美匹配。

定义 2.5: 交叉立方体 CQ_n 的顶点集为 $\{v_{n-1}v_{n-2}\cdots v_0 \mid v_i \in \{0,1\}, 0 \le i \le n-1\}$,两个顶点 $u=u_{n-1}u_{n-2}\cdots u_0$, $v=v_{n-1}v_{n-2}\cdots v_0$ 相邻当且仅当满足以下条件之一。

条件 1: 存在一个整数 d, $1 \le d \le n-1$ 使得

- (1) $u_{n-1}u_{n-2}\cdots u_d = v_{n-1}v_{n-2}\cdots v_d$;
- (2) $u_{d-1} \neq v_{d-1}$;
- (3) 如果 d 是偶数, $u_{d-2} = v_{d-2}$;

(4)
$$\stackrel{\text{def}}{=} 0 \le i \le \left| \frac{d-1}{2} \right| \text{ iff }, \quad u_{2i+1}u_{2i} \sim v_{2i+1}v_{2i} \text{ o}$$

条件 2:

(1) $u_{n-1} \neq v_{n-1}$;

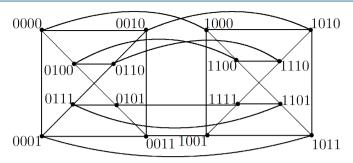


Figure 1. The 4-dimensional crossed cube CQ_4 图 1. 4 维交叉立方体 CO_4

(2) 如果 n 是偶数, $u_{n-2} = v_{n-2}$;

(3)
$$\stackrel{\text{def}}{=} 0 \le i < \left| \frac{n-1}{2} \right| \text{ By}, \quad u_{2i+1}u_{2i} \sim v_{2i+1}v_{2i}$$

3. CO_n 的 1 好邻连通度

引理 3.1: 交叉立方体 CO,中任意两个顶点至多有两个公共邻点。

引理 3.2 [8]: 交叉立方体 CQ_n 的连通度 $\kappa(CQ_n) = n \ (n \ge 1)$ 。

引理 3.3: 当 $n \ge 4$ 时,对任意的 $uv \in E(CQ_n)$,设 $A = \{u,v\}$ 且 $F = N_{CQ_n}(A)$,则 $\delta(CQ_n - (A \cup F)) \ge 1$ 。

证明: 要证 $\delta(CQ_n - (A \cup F)) \ge 1$,只需证明 $CQ_n - (A \cup F)$ 不含孤立点。当 n = 4 时结论显然成立。用 反证法证明 $n \ge 5$ 时结论也成立。假设 $w \not\in CQ_n - (A \cup F)$ 中的孤立点,则 $N_{CQ_n}(w) \subset F$ 。因为 $A = \{u,v\}$ 和 $F = N_{CQ_n}(A)$, 所以 $N_{CQ_n}(u) \subset F$ 和 $N_{CQ_n}(v) \subset F$ 。 根据引理 3.1,可得 $\left|N_{CQ_n}(w) \cap N_{CQ_n}(u)\right| \le 2$ 和 $\left|N_{CQ_n}(w) \cap N_{CQ_n}(v)\right| \le 2$ 。于是, $\left|N_{CQ_n}(w) \cap F\right| \le 4$ 。因为 $CQ_n \not\in n$ 正则图,所以 $\left|N_{CQ_n}(w)\right| = n \ge 5$ 。因此, $w \not\in P$ 存在一个邻点不在 F 中。这与 $N_{CQ_n}(w) \subset F$ 矛盾。所以 $N_{CQ_n}(a \cup F)$ 不含孤立点。故 $N_{CQ_n}(a \cup F) \ge 1$ 。

引理 3.4: 交叉立方体 CQ_n 的 1 好邻连通度 $\kappa^{(1)}(CQ_n) \leq 2n - 2(n \geq 4)$ 。

证明: 设 A 和 F 的定义与引理 3.3 相同,则 F 是一个割。因为 CQ_n 不包含三圈,所以|F|=2n-2。根据引理 3.3,可得 $\delta(CQ_n-(A\cup F))\geq 1$ 。又因为 $\delta(CQ_n[A])=1$ 。因此,F 是一个 1 好邻割。故 $\kappa^{(1)}(CQ_n)\leq |F|=2n-2$ 。

引理 3.5: 交叉立方体 CQ_n 的 1 好邻连通度 $\kappa^{(1)}(CQ_n) \geq 2n - 2(n \geq 4)$ 。

证明: 设 $F \in CQ_n$ 的任意的一个 1 好邻割。根据 1 好邻连通度的定义,要证 $\kappa^{(1)}(CQ_n) \ge 2n-2$,只

需证明 $|F| \ge 2n-2$ 。用反证法证明。假设 $|F| \le 2n-3$ 。因为 F 是 1 好邻割,所以 $CQ_n - F$ 没有孤立点且不连通。将 CQ_n 沿最高位分解成两个 n-1 维的子图 CQ_{n-1}^0 和 CQ_{n-1}^1 。则 CQ_{n-1}^0 和 CQ_{n-1}^1 同构于 CQ_{n-1}^1 。设 $F_0 = F \cap V\left(CQ_{n-1}^0\right)$, $F_1 = F \cap V\left(CQ_{n-1}^1\right)$ 和 $|F_0| \le |F_1|$,则 $F = F_0 \cup F_1$ 且 $F_0 \cap F_1 = \emptyset$ 。因为 $|F_0| \le |F_1|$,所以 $|F_0| \le n-2$ 。根据引理 3.2,可得 $\kappa\left(CQ_{n-1}\right) = n-1$ 。因此, $CQ_{n-1}^0 - F_0$ 连通。设 $CQ_{n-1}^1 - F_1$ 是连通的。由于 $2^{n-1} > 2n-3(n \ge 4)$ 和在 $CQ_{n-1}^0 = CQ_{n-1}^1$ 间的交叉边是 CQ_n 的一个完美匹配,

 $CQ_n\Big[Vig(CQ_{n-1}^0-F_0ig)ig\cup Vig(CQ_{n-1}^1-F_1ig)\Big]$ 是连通的,即 CQ_n-F 是连通的。这个矛盾到 CQ_n-F 是不连通的。因此,设 $CQ_{n-1}^1-F_1$ 是不连通的。由引理 3.2, $|F_1|\geq n-1$ 。设 B_1,\cdots,B_k $(k\geq 2)$ 是 $CQ_{n-1}^1-F_1$ 的分支。设 $|V(B_i)|=1$ 和设 $V(B_i)=\{u\}$ 。由于 F 是 1 好邻割,所以在 $CQ_{n-1}^0-F_0$ 中存在一点 v 使得 $uv\in E(CQ_n-F)$ 。即, $CQ_n\Big[Vig(CQ_{n-1}^0-F_0ig)ig\cup Vig(B_iig)\Big]$ 是连通的。设 $|V(B_j)|\geq 2$ 和设 $ab\in E(B_j)$ 。设在 $CQ_{n-1}^0-F_0$ 中存在一点,它相邻到 a 和 b 中至少一个。则 $CQ_n\Big[Vig(CQ_{n-1}^0-F_0ig)ig\cup Vig(B_iig)\Big]$ 是连通的。设在 $CQ_{n-1}^0-F_0$ 中不存在一点,它相邻到 a 和 b 两个。由于在 CQ_{n-1}^0 与 CQ_{n-1}^1 间的交叉边是 CQ_n 的一个完美匹配,所以 $|F_0|\geq 2$ 。由于 $n\geq 4$,所以 $2\leq |F_0|\leq n-2$ 。由于 $|F|\leq 2n-3$,所以 $n-1\leq |F_1|\leq 2n-5$ 。注意到 $\Big|N_{CQ_{n-1}^1}\big(\{a,b\}\big)\Big|=2(n-1)-2=2n-4$ 。由于 $\Big|N_{CQ_{n-1}^1}\big(\{a,b\}\big)\Big|=2n-4>2n-5\geq |F_0|-2+|F_1|$,所以在 $CQ_{n-1}^0-F_0$ 中存在一点,它相邻到 a,b 邻集中一点,即 $CQ_n\Big[Vig(CQ_{n-1}^0-F_0ig)ig\cup Vig(B_jig)\Big]$ 是连通的。因此, $CQ_n\Big[Vig(CQ_{n-1}^0-F_0ig)ig\cup Vig(CQ_{n-1}^1-F_1ig)\Big]$ 是连通的,即, CQ_n-F 是连通的。这个矛盾到 CQ_n-F 是不连通的。

结合引理 3.4 和引理 3.5 可得以下定理:

定理 3.6: 交叉立方体 CQ_n 的 1 好邻连通度 $\kappa^{(1)}(CQ_n) = 2n - 2(n \ge 4)$ 。

4. CO, 在 PMC 模型下的 1 好邻诊断度

定理 4.1 [4]: 一个系统 G = (V, E) 在 PMC 模型下是 g 好邻 t-可诊断的当且对于 V 中任意两个不同的 顶点数至多为 t 的 g 好邻故障集 F_1 , F_2 , 存在 $u \in V \setminus (F_1 \cup F_2)$ 和 $v \in F_1 \triangle F_2$, 使得 $uv \in E$ (如图 2)。

引理 4.2: 最小度为 1 的图至少有两个顶点。

引理 4.3: 交叉立方体 CQ_n 在 PMC 模型下的 1 好邻诊断度 $t_1(CQ_n) \le 2n - 1 (n \ge 4)$ 。

证明: 对任意的 $uv \in E(CQ_n)$,设 $A = \{u,v\}$, $F_1 = N_{CQ_n}(A)$ 和 $F_2 = A \cup F_1$ 。因为 CQ_n 不包含三圈,所以 $|F_1| = 2n - 2$ 和 $|F_2| = 2n$ 。根据引理 3.3,可得 $\delta(CQ_n - F_2) \ge 1$ 。又因为 $\delta(CQ_n[A]) = 1$,所以 F_1 , F_2 是 CQ_n 的两个 1 好邻故障集。因为 $F_1\Delta F_2 = A$,所以在 $V(CQ_n) \setminus (F_1 \cup F_2)$ 和 $F_1\Delta F_2$ 之间没有边。由定理 4.1, CQ_n 不是 1 好邻 2n-可诊断的。因此, $t_1(CQ_n) \le 2n - 1$ 。

引理 4.4: 交叉立方体 CQ_n 在 PMC 模型下的 1 好邻诊断度 $t_1(CQ_n) \ge 2n - 1 (n \ge 4)$ 。

证明: 根据 1 好邻诊断度的定义,需要证明 CQ_n 是 1 好邻 (2n-1) -可诊断的。根据定理 4.1,等价于证明任意两个不同的 1 好邻故障集 F_1 , F_2 ,其中 $|F_1| \le 2n-1$ 和 $|F_2| \le 2n-1$,存在 $u \in V(CQ_n) \setminus (F_1 \cup F_2)$ 和 $v \in F_1 \Delta F_2$,使得 $uv \in E(CQ_n)$ 。反证法。假设存在两个不同的 1 好邻故障集 F_1 , F_2 ,其中 $|F_1| \le 2n-1$ 和 $|F_2| \le 2n-1$,对任意的 $u \in V(CQ_n) \setminus (F_1 \cup F_2)$ 和 $v \in F_1 \Delta F_2$ 都有 $uv \notin E(CQ_n)$ 。不失一般性,假设 $F_2 \setminus F_1 \neq \emptyset$ 。分以下两种情况进行讨论:

情形 1: $V(CQ_n) = F_1 \cup F_2$ 。 $2^n = |V(CQ_n)| = |F_1| + |F_2| - |F_1 \cap F_2| \le |F_1| + |F_2| \le 2n - 1 + 2n - 1 = 4n - 2$ 。 当 $n \ge 4$ 时,上述不等式矛盾。 情形 2: $V(CQ_n) \ne F_1 \cup F_2$ 。

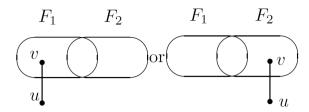


Figure 2. A distinguishable pair (F_1, F_2) under the PMC model **图 2.** 在 PMC 模型下可区分对 (F_1, F_2)

根据假设 $V(CQ_n)\setminus (F_1\cup F_2)$ 与 $F_1\Delta F_2$ 之间没有边和 F_1 是 1 好邻条件故障集,可得 $\delta(CQ_n-F_1\cup F_2)\geq 1$ 和 $\delta(CQ_n[F_2\setminus F_1])\geq 1$ 。同理,若 $F_1\setminus F_2\neq\varnothing$, $\delta(CQ_n[F_1\setminus F_2])\geq 1$ 。因此, $F_1\cap F_2$ 也是 1 好邻条件故障集。 又因为 $V(CQ_n)\setminus (F_1\cup F_2)$ 与 $F_1\Delta F_2$ 之间没有边,所以 $CQ_n-F_1-F_2$ 不连通。故 $F_1\cap F_2$ 是 CQ_n 的 1 好邻割。 根据定理 3.6,可得 $|F_1\cap F_2|\geq 2n-2$ 。 根据引理 4.2,可得 $|F_2\setminus F_1|\geq 2$ 。 因此,

 $|F_2| = |F_2 \setminus F_1| + |F_1 \cap F_2| \ge 2 + 2n - 2 = 2n$ 。这与 $|F_2| \le 2n - 1$ 相矛盾。

由于以上两种情况都产生矛盾,故 CQ_n 是 1 好邻 (2n-1)-可诊断的。于是, $t_1(CQ_n) \ge 2n-1$ 。

结合引理 4.3 和引理 4.4, 可得以下定理:

定理 4.5: 交叉立方体 $CQ_n(n \ge 4)$ 在 PMC 模型下的 1 好邻诊断度 $t_1(CQ_n) = 2n - 1(n \ge 4)$ 。

5. CO, 在 MM*模型下的 1 好邻诊断度

定理 5.1 [4]: 一个系统 G = (V, E) 在 MM*模型下是 g 好邻 t-可诊断的当且仅当对 V 中任意两个不同的顶点数至多为 t 的 g 好邻故障集 F_1 , F_2 , 满足以下其中一个条件(如图 3):

- (1) 存在 $u, w \in V \setminus (F_1 \cup F_2)$ 和 $v \in F_1 \Delta F_2$ 满足 $uw, vw \in E$.
- (2) 存在 $u, v \in F_1 \setminus F_2$ 和 $w \in V \setminus (F_1 \cup F_2)$ 满足 $uw, vw \in E$ 。
- (3) 存在 $u, v \in F_2 \setminus F_1$ 和 $w \in V \setminus (F_1 \cup F_2)$ 满足 $uw, vw \in E$ 。

引理 5.2: 交叉立方体 CQ_n 在 $MM*模型下的 1 好邻诊断度 <math>t_1(CQ_n) \le 2n-1 (n \ge 4)$ 。

证明: 对任意的 $uv \in E(CQ_n)$,设 $A = \{u,v\}$, $F_1 = N_{CQ_n}(A)$ 和 $F_2 = A \cup F_1$ 。因为 CQ_n 不包含三圈,所以 $|F_1| = 2n - 2$ 和 $|F_2| = 2n$ 。由引理 3.3,可得 $\delta(CQ_n - F_1) \ge 1$ 和 $\delta(CQ_n - F_2) \ge 1$ 。因此, F_1 , F_2 是 CQ_n 的两个 1 好邻故障集且 $|F_1| \le 2n$, $|F_2| \le 2n$ 。因为 $F_1\Delta F_2 = A$, $V(CQ_n) \setminus (F_1 \cup F_2) = V(CQ_n) \setminus F_2$ 且 A 与 $V(CQ_n) \setminus F_2$ 之间没有边,所以 F_1 , F_2 不满足定理 5.1 中的(1)~(3)。因此, CQ_n 不是 1 好邻条件 2n 可诊断的。故 $t_1(CQ_n) \le 2n - 1$ 。

引理 5.3: 交叉立方体 CQ_n 在 $MM*模型下的 1 好邻诊断度 <math>t_1(CQ_n) \ge 2n - 1 (n \ge 5)$ 。

证明: 根据 1 好邻诊断度的定义,需要证明 CQ_n 是 1 好邻 (2n-1)-可诊断的。反证法。根据定理 5.1,假设 $V(CQ_n)$ 中存在两个不同的顶点数至多为 2n-1 的故障集 F_1, F_2 不满足定理 5.1 中的(1)~(3)。不失一般性,假设 $F_2 \setminus F_1 \neq \emptyset$ 。分以下两种情况进行讨论:

情形 1: $V(CQ_n) = F_1 \cup F_2$ 。

证明同引理 4.4 的情形 1。

情形 2: $V(CQ_n) \neq F_1 \cup F_2$ 。

断言 1: $CQ_n - F_1 - F_2$ 没有孤立点。

反证法。假设 $CQ_n - F_1 - F_2$ 至少有一个孤立点 w。因为 F_1 是一个 1 好邻故障集,所以至少存在一点 $u \in F_2 \setminus F_1$ 使得 $uw \in E(CQ_n)$ 。因为 F_1 , F_2 不满足定理 5.1 中的(3),所以至多存在一点 $u \in F_2 \setminus F_1$ 使得 $uw \in E(CQ_n)$ 。因此仅有一点 $u \in F_2 \setminus F_1$ 使得 $uw \in E(CQ_n)$ 。同理,当 $F_1 \setminus F_2 \neq \emptyset$ 时,仅有一点 $v \in F_1 \setminus F_2$ 使

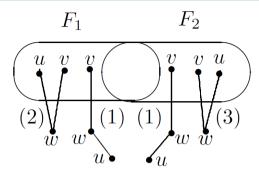


Figure 3. A distinguishable pair (F_1, F_2) under the MM* model 图 3. 在 MM*模型下可区分对 (F_1, F_2)

得 $vw \in E(CQ_n)$ 。 设 $W \not\in CQ_n \Big[V(CQ_n) \setminus (F_1 \cup F_2) \Big]$ 中的孤立点集, $H = CQ_n \Big[V(CQ_n) - F_1 - F_2 - W \Big]$ 。 因此, 当 $F_1 \setminus F_2 \neq \emptyset$ 时, 对任意的 $w \in W$,存在 (n-2) 个邻点在 $F_1 \cap F_2$ 中。 由于 $|F_2| \leq 2n-1$,故 $\sum_{w \in W} \Big| N_{CQ_n \big[(F_1 \cap F_2) \cup W \big]} (w) \Big| \leq |W| (n-2) \leq \sum_{v \in F_1 \cap F_2} d_{CQ_n} (v) \leq |F_1 \cap F_2| n \leq (|F_2| - 1) n \leq (2n-2) n = 2n^2 - 2n$ 。 因为 $n \geq 5$,所以 |W| < 2n+4 。 假设 $V(H) = \emptyset$,有

 $2^n = |V(CQ_n)| = |F_1 \cup F_2| + |W| = |F_1| + |F_2| - |F_1 \cap F_2| + |W| < 2(2n-1) - (n-2) + 2n + 4 = 5n + 4$ 。 当 $n \ge 5$ 时,上式矛盾。所以, $V(H) \ne \emptyset$ 。 因为 F_1 , F_2 不满足定理 5.1 中的(1)且V(H)的任意一点在 H 中不是孤立点,所以V(H)与 $F_1 \triangle F_2$ 之间不存在边相连。因此, $F_1 \cap F_2$ 是 CQ_n 的点割且 $\delta(CQ_n - (F_1 \cap F_2)) \ge 1$,即 $F_1 \cap F_2$ 是 CQ_n 的一个 1 好邻割。根据定理 3.6, $|F_1 \cap F_2| \ge 2n - 2$ 。 因为 $|F_1| \le 2n - 1$, $|F_2| \le 2n - 1$ 且 $F_1 \setminus F_2$ 和 $F_2 \setminus F_1$ 都非空,所以 $|F_1 \setminus F_2| = |F_2 \setminus F_1| = 1$ 。 于是,设 $F_1 \setminus F_2 = \{v_1\}$ 和 $F_2 \setminus F_1 = \{v_2\}$ 。 故对于任意的 $w \in W$ 满足 $wv_1, wv_2 \in E(CQ_n)$ 。根据引理 3.1, v_1 与 v_2 至多有两个公共邻点。因此, $CQ_n - F_1 - F_2$ 至多有两个孤立点。

假设 $CQ_n - F_1 - F_2$ 中恰有一个孤立点 v,则 $vv_1, vv_2 \in E(CQ_n)$ 和 $N_{CQ_n}(v) \setminus \{v_1, v_2\} \subseteq F_1 \cap F_2$ 。因为 CQ_n 不包含三圈,所以 $N_{CQ_n}(v_1) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$, $N_{CQ_n}(v_2) \setminus \{v\} \subseteq F_1 \cap F_2$,N

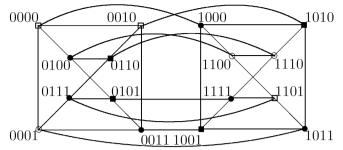
假设 $CQ_n - F_1 - F_2$ 中恰有两个孤立点 v 和 v' 则 $vv_1, vv_2, v'v_1, v'v_2 \in E(CQ_n)$, $N_{CQ_n}(v) \setminus \{v_1, v_2\} \subseteq F_1 \cap F_2$ 和 $N_{CQ_n}(v') \setminus \{v_1, v_2\} \subseteq F_1 \cap F_2$ 。 因为 CQ_n 不包含三圈,所以 $N_{CQ_n}(v_1) \setminus \{v, v'\} \subseteq F_1 \cap F_2$ 和

 $N_{CQ_n}(v_2)\setminus\{v,v'\}\subseteq F_1\cap F_2$ 。又因为任意两点至多有两个公共邻点,所以 $N_{CQ_n}(v)\setminus\{v_1,v_2\}$, $N_{CQ_n}(v')\setminus\{v_1,v_2\}$, $N_{CQ_n}(v_1)\setminus\{v,v'\}$ 和 $N_{CQ_n}(v_2)\setminus\{v,v'\}$ 中任意两个集合在 $F_1\cap F_2$ 中都没有公共点。因此

$$\begin{split} & \left| F_1 \cap F_2 \right| \geq \left| N_{CQ_n} \left(v \right) \setminus \left\{ v_1, v_2 \right\} \right| + \left| N_{CQ_n} \left(v' \right) \setminus \left\{ v_1, v_2 \right\} \right| + \left| N_{CQ_n} \left(v_1 \right) \setminus \left\{ v, v' \right\} \right| + \left| N_{CQ_n} \left(v_2 \right) \setminus \left\{ v, v' \right\} \right| = 4 \left(n - 2 \right) = 4 n - 8 \quad \text{ } \\ & \mathcal{E}, \quad \left| F_2 \right| = \left| F_2 \setminus F_1 \right| + \left| F_1 \cap F_2 \right| \geq 1 + 4 n - 8 = 4 n - 7 > 2 n - 1 \left(n \geq 5 \right), \quad 这与 \left| F_2 \right| \leq 2 n - 1 \, 矛盾 \, . \end{split}$$

若 $F_1 \setminus F_2 = \emptyset$,则 $F_1 \subseteq F_2$ 。因为 F_2 是一个 1 好邻故障集,所以 $CQ_n - F_2 = CQ_n - F_1 - F_2$ 没有孤立点。断言 1 证明完毕。

设 $u \in V(CQ_n) \setminus (F_1 \cup F_2)$ 。根据断言 1,u 在 $CQ_n - F_1 - F_2$ 中至少有一个邻点。因为 F_1 , F_2 不满足定理 5.1,根据定理 5.1(1),所以对于任意一对相邻的点 $u, w \in V(CQ_n) \setminus (F_1 \cup F_2)$,不存在 $v \in F_1 \triangle F_2$ 使得



 \square : $F_1 \setminus F_2 \blacksquare$: $F_1 \cap F_2 \circ : F_2 \setminus F_1 \bullet : W = V \setminus (F_1 \cup F_2)$

Figure 4. *CQ*₄ is not 1-good-neighbor 7-diagnosable **图 4.** *CQ*₄ 不是 1 好邻 7-可诊断的

 $uw \in E(CQ_n)$ 和 $wv \in E(CQ_n)$ 。因此,u 在 $F_1\Delta F_2$ 中没有邻点。由 u 的任意性, $V(CQ_n)\setminus (F_1\cup F_2)$ 与 $F_1\Delta F_2$ 中间没有边。因为 F_1 是一个 1 好邻故障集且 $F_2\setminus F_1\neq\emptyset$,所以 $\delta(CQ_n[F_2\setminus F_1])\geq 1$ 。根据引理 4.5, $|F_2\setminus F_1|\geq 2$ 。因为 F_1 和 F_2 都是 1 好邻故障集且 $V(CQ_n)\setminus (F_1\cup F_2)$ 与 $F_1\Delta F_2$ 之间没有边,所以 $F_1\cap F_1$ 是 CQ_n 的一个 1 好邻割。根据定理 3.6, $|F_1\cap F_2|\geq 2n-2$ 。因此, $|F_2|=|F_2\setminus F_1|+|F_1\cap F_2|\geq 2+2n-2=2n$ 。这与 $|F_2|\leq 2n-1$ 矛盾。于是, CQ_n 是一个 1 好邻 (2n-1) -可诊断的。故 $t_1(CQ_n)\geq 2n-1$ 。

结合引理 5.2 和引理 5.3 可得以下定理:

定理 5.4: 交叉立方体 CQ_n 在 $MM*模型下的 1 好邻诊断度 <math>t_1(CQ_n) = 2n - 1 (n \ge 5)$ 。

下面的例子说明当 n=4 时, CQ_4 在 MM*模型下不是 1 好邻 7-可诊断的。设 $F_1=\left\{0000,0010,1101,0110,0101,1001,1010\right\}$ 和 $F_2=\left\{0001,1100,1110,0110,0101,1001,1010\right\}$ 。 容易验证 F_1 和 F_2 不满足定理 5.1 中的(1)~(3) (如图 4),所以 CQ_4 在 MM*模型下不是 1 好邻 7-可诊断的。

6. 结束语

连通度和诊断度是互联网络容错的重要指标,本文研究了交叉立方体的 1 好邻连通度 $\kappa^{(1)}(CQ_n)=2n-2(n\geq 4)$ 和 1 好邻诊断度 $t_1(CQ_n)=2n-1$ 。它是交叉立方体传统诊断度的两倍,意味着系统能够诊断出更多的故障结点。此外,本文还证明了在 MM*模型下 CQ_4 不是 1 好邻 7-可诊断的。这为今后进一步研究交叉立方体网络的 g 好邻连通度、诊断度和相关诊断算法提供了理论基础。

基金项目

国家自然科学基金资助项目(61370001),教育部博士点基金(博导类)资助项目(20111401110005)。

参考文献 (References)

- [1] Preparata, F., Metze, G. and Chien, R.T. (1968) On the Connection Assignment Problem of Diagnosable Systems. *IEEE Transactions on Electronic Computers*, **12**, 848-854.
- [2] Maeng, J. and Malek, M. (1981) A Comparison Connection Assignment for Self-Diagnosis of Multiprocessor Systems. Proceeding of 11th International Symposium on Fault-Tolerant Computing, 173-175.
- [3] Lai, P.-L., Tan, J.J.M., Chang, C.-P. and Hsu, L.-H. (2005) Conditional Diagnosability Measures for Large Multiprocessor Systems. *IEEE Transactions on Computers*, **54**, 165-175. http://dx.doi.org/10.1109/TC.2005.19
- [4] Peng, S.-L., Lin, C.-K., Tan, J.J.M. and Hsu, L.-H. (2012) The g-Good-Neighbor Conditional Diagnosability of Hypercube under the PMC Model. *Applied Mathematics Computation*, 218, 10406-10412. http://dx.doi.org/10.1016/j.amc.2012.03.092
- [5] Yuan, J., Liu, A.X., Ma, X., Liu, X.L., Qin, X. and Zhang, J.F. (2015) The g-Good-Neighbor Conditional Diagnosability of k-Ary n-Cubes under the PMC Model and MM* Model. *IEEE Transactions on Parallel and Distributed Systems*, **26**, 1165-1177. http://dx.doi.org/10.1109/TPDS.2014.2318305
- [6] Wang, M.J.S., Guo, Y.B. and Wang, S.Y. (2015) The 1-Good-Neighbor Diagnosability of Cayley Graphs Generated by

- Transposition Trees under the PMC Model and MM* Model. *International Journal of Computer Mathematics*.
- [7] Bondy, J.A. and Murty, U.S.R. (2007) Graph Theory. Springer, New York.
- [8] Efe, K. (1992) The Crossed Cube Architecture for Parallel Computation. *IEEE Transactions on Parallel and Distributed Systems*, **3**, 513-524. http://dx.doi.org/10.1109/71.159036