Design and Propagation Properties Study on Terahertz Photonic Bandgap Fiber

Doudou Wang*, Tao Zhang

College of Science, Xi'an University of Science and Technology, Xi'an Email: *<u>wangdoudou@xust.edu.cn</u>

Received: Mar. 27th, 2014; revised: May 1st, 2014; accepted: May 10th, 2014

Copyright © 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

© Open Access

Abstract

An air core photonic bandgap fiber is designed based on the novel Terahertz low-loss material Topas cyclic olefin copolymer. Propagation properties in the terahertz band of the fiber are investigated by using the finite element method. Numerical results indicate that the fiber has a low loss photonic bandgap within a broadband area about 0.2 THz around 1.47 THz, and THz wave is welled confined in the air core. Loss reaches the minimum value of 0.13 cm⁻¹ at 1.51 THz. Structure of designed terahertz Topas photonic bandgap fiber is simple, feasible for fabrication and bendable because of the relatively small diameter.

Keywords

Terahertz, Photonic Crystal Fiber, Finite Element Method, Topas Cyclic Olefin Copolymer

太赫兹光子带隙光纤的设计及传输特性模拟

王豆豆*,张 涛

西安科技大学理学院,西安 Email: ^{*}<u>wangdoudou@xust.edu.cn</u>

收稿日期: 2014年3月27日; 修回日期: 2014年5月1日; 录用日期: 2014年5月10日

摘要

以新型太赫兹低损耗材料Topas环烯烃共聚物为基质,设计了一种基于带隙效应传输太赫兹波的空气芯

聚合物光子晶体光纤。应用有限元方法对光纤的传输特性进行了分析。结果表明,该光纤在1.47 THz附近具有宽度约为0.2 THz的连续低损耗传输带宽,可以很好地将太赫兹波限制在空气芯中传输。在1.51 THz处获得了0.13 cm⁻¹最小总损耗值。所设计的太赫兹Topas光子带隙光纤具备结构简单、易制备、直径小而易弯曲的特点。

关键词

太赫兹,光子晶体光纤,有限元方法,Topas环烯烃共聚物

1. 引言

太赫兹(THz)波是指波长在 30~3000 µm 范围内的电磁波,它填补了已被广泛利用的光波和微波之间 的这一"空白区域"。该波长区域在生物化学传感、非介入性成像和光谱学等领域有着潜在的应用价值 [1][2]。近年来,太赫兹波导器件引起了人们极大的研究热情[3][4]。然而,由于大多数的材料在该波段 都具有很高的吸收损耗,这成为设计太赫兹波导的一大挑战。人们采用了不同的材料,提出了各种各样 的波导结构,如金属波导、金属线、塑料带、介质纤维以及聚合物光子晶体光纤(polymer Photonic Crystal Fiber, pPCF)等等。然而,较大的材料损耗仍然是太赫兹波导器件实用化所亟待克服的难题[5]。

在各种聚合物材料中,Topas 环烯烃共聚物(Topas COC)由于在太赫兹波段具有低损耗(约为 PMMA 的 1/100)和低材料色散(在 0.1~1.5 THz 范围内折射率为常数 n = 1.5258)特性而备受关注[6]。此外,Topas COC 与 pPCF 惯用的基质材料聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)和聚苯乙烯(PS)等相比,具有低 密度、高折射率、高光学透光率、大的 Abb 数、低双折射、极低的吸水率(约为 PMMA、PC 的 1/10)以 及耐热性能好、热膨胀系数低、化学性能稳定、耐酸碱性、机械性能优良等诸多优点[7] [8]。

本文以 Topas COC 为基质,设计了一种空芯带隙型 pPCF。应用有限元方法(FEM),借助商用软件 COMSOL Multiphysics 的 RF 模块,研究了该 pPCF 在太赫兹波段的传输特性。结果表明所设计的 pPCF 可基于带隙效应传输太赫兹波,在 0.75 THz 附近可以将模场很好的限制在中央空气芯中传输。由于绝大部分的太赫兹场是在空气中传输,将材料吸收损耗降到了最低,同时具有较低的限制损耗。所设计的 pPCF 可以由"挤出-成型法"[9]制备。

2. 结构设计及理论模型

本文设计的 pPCF 的端面结构如图 1 所示,在 Topas COC 基质中,按照三角形晶格排列的 4 圈空气 孔构成包层,空气孔直径和孔间距分别由 *d* 和 A 表示;中心处缺失 7 个空气孔而形成空气纤芯。采用 FEM[10]对所设计的 pPCF 在太赫兹波段的传输特性进行了研究。首先将 pPCF 横截面划分为有限个互不 重叠的三角形或四边形小单元,将离散的麦克斯韦方程运用于每一个单元,在单元的边界处加上连续性 条件,通过求解本征方程最终获得模场的分布和传输特性。从麦克斯韦方程组出发,得出磁场 *H* 满足的 波动方程:

$$\nabla \times \left(n^{-2} \nabla \times \boldsymbol{H} \right) - k_0^2 \boldsymbol{H} = 0 \tag{1}$$

其中n为折射率, $k_0 = 2\pi/\lambda$ 为真空中的波数。假设太赫兹波沿z轴传播并具有下面的形式:

$$\boldsymbol{H}(x, y, z, t) = \boldsymbol{H}(x, y, z) \exp\left| j(\omega t - \beta z) \right|$$
(2)

其中 ω 为角频率, β 为传播常数。pPCF 内部空气孔与基质材料界面处采用连续性边界条件。为了获得 模式的泄露损耗特性,在包层外边界处采用吸收边界条件。理论上可以求出 pPCF 横截面内的模场分布 和传播常数 β ,从而求出与波长对应的模式有效折射率:

$$n_{eff}\left(\lambda\right) = \frac{\beta}{k_0} \tag{3}$$

3. 传输特性分析

3.1. 带隙与结构参数的关系

首先通过对 $d = 250 \ \mu m$ 、 $\Lambda = 275 \ \mu m (d/\Lambda = 0.91)$ 的 THz pPCF,保持 d/Λ 固定的同时进行按比 例缩放来改变空气孔直径 d (pPCF 外径)的大小,研究了带隙的变化情况。图 2为 $d/\Lambda = 0.91$, d分别 为 225 μm 、250 μm 和 275 μm 时包层中的带隙结构。可以看出随着空气孔直径的增加,带隙向低频方向 移动并且变窄。根据该结论,对相同的光纤预制棒,通过控制拉伸后的空气孔直径 d (pPCF 外径)的大小,可以在特定频率处获得带隙而实现太赫兹波在空气芯中低损耗传输。

针对 $d = 250 \,\mu$ m、 $\Lambda = 275 \,\mu$ m ($d/\Lambda = 0.91$)的 THz pPCF,采用 FEM 对其在太赫兹波段的模场分 布、基模有效折射率和损耗特性等进行了研究。图 3 为 pPCF 空气芯中传导的基模有效折射率随频率的 变化关系。阴影区域表示无限大周期性包层结构中的带隙,粗的黑色实线表示基模有效折射率,直虚线 表示空气线(对应于纤芯的折射率)。由于带隙是针对无限大的包层结构计算的,而实际求解基模有效折射 率时,pPCF 的包层空气孔圈数是有限的,所以基模有效折射率会略超出带隙边界。此外,位于空气芯周 围介质环中的表面模和纤芯基模间的反交叉作用,导致基模有效折射率随频率的变化曲线在反交叉点处 不连续。限制了 pPCF 的实际低损耗传输带宽,但是反交叉点位于带隙的高频边界附近。减小纤芯周围 的介质环厚度,可以将反交叉点推向带隙边缘,最大程度的增加低损耗带宽,但是也会增加制备难度。

图 4 为位于空气芯中的能量比例随频率的变化关系。可以看出,在 1.4~1.63 THz 的带隙范围内,在

Figure 4. Fraction of power localized in the core as a function of frequency 图 4. 空气芯中能量比例随频率的变化关系

1.58 THz 附近存在一个纤芯能量比骤降的区域,对应于图 3 中基模和表面模间的反交叉点。这是由于在 反交叉点附近基模和表面模之间发生耦合,导致位于纤芯中的基模能量减小。同时,纤芯能量比随着传 输频率向两边带隙边缘靠近而减小。这是由于在带隙边缘附近,包层已经无法将基模很好的束缚在纤芯 区域了。若将位于纤芯中的功率比小于 25%定义为模式截止(带隙边缘),该 pPCF 在 1.47 THz 附近具有 宽度约为 0.2 THz 的连续低损耗传输带宽。

3.2. 损耗特性

对于带隙范围内导模的损耗主要包括:基底材料吸收引起的模式吸收损耗和有限的包层空气孔圈数 导致的模式泄露而带来的限制损耗。模式吸收损耗 α_{mod} 与材料体吸收系数 α_{mat}、材料折射率 n 以及模场 分布有关,可以表示为[11]:

$$\alpha_{\rm mod} = \frac{\left(\varepsilon_0/\mu_0\right)^{1/2} n\alpha_{\rm mat} \int\limits_{\rm Topas} |E|^2 \, dA}{2\int_{\rm all} S_z \, dA} \tag{4}$$

其中 E 为电场强度, S_z 为波印廷矢量的 z 分量, ε_0 和 μ_0 分别为真空中的介电常数和磁导率。"Topas" 和 "all"分别表示积分范围为光纤的基底材料和整个横截面。K. Nielsen 等人的实验结果表明, Topas COC 的材料体吸收系数在 0.2~1.6 THz 范围内随频率的增加近似线性增加[12]。背景材料的折射率n取 1.5258。

限制损耗CL可以由基模有效折射率的虚部求出[10]:

$$CL = 8.686 \frac{2\pi f}{c} \operatorname{Im}(n_{\text{eff}})$$
(5)

单位为dB/m,其中Im表示取复数折射率的虚部。

总损耗随频率的变化关系如图 5 所示。为了方便比较,图中的虚线表示出了 Topas COC 的材料吸收 损耗[12]。在带隙的中心处、模场束缚较好的区域,限制损耗较小,此时以模式损耗为主;而在带隙的边 缘处,限制损耗起了主导作用。对于所设计的 THz Topas pPCF,在其实际的连续低损耗带宽范围内,总 损耗的最小值约为 0.13 cm⁻¹,出现在 1.51 THz 附近。

图 6 给出了 1.51 THz 时的基模模场分布情况。可以看出大部分基模的能量都可以束缚在空气芯中传

Figure 6. Modal patterns for the fundamental mode at 1.51 THz 图 6. 频率为 1.51 THz 时的基模模场分布

输,但是在纤芯周围的介质壁中也分布着一部分能量,位于介质壁中的基模能量占总能量的 13.43%。光 纤基底材料的吸收损耗为 0.08 cm⁻¹,限制损耗为 0.05 cm⁻¹,介质壁中的材料吸收损耗占总损耗(包括材料 吸收损耗和限制损耗)的比例为 62%。这是导致该 pPCF 损耗的主要原因。

4. 结论

本文以新型 THz 低损耗聚合物材料 Topas COC 为基质,设计了一种空芯带隙型光子晶体光纤。采用 全矢量有限元方法对该光纤在 THz 波段的带隙结构、模场特性和损耗特性进行了理论研究。研究结论表 明:该光纤在 1.47 THz 附近具有宽度约为 0.2 THz 的连续低损耗传输带宽,总损耗最小值约为 0.13 cm⁻¹, 出现在 1.51 THz 附近。所设计的 THz Topas 光子带隙光纤在追求低损耗传输特性的同时,兼顾了结构简 单、易于制备,以及直径小、柔软可弯曲的特点。

致 谢

本文感谢国家自然科学基金(No. 61201088)、陕西省自然科学基础研究计划项目(No. 2014 JQ8335)、 陕西省教育厅科研计划资助项目(No. 2013JK1106)、西安科技大学博士启动金(No. 2012QDJ043)和西安科 技大学培育基金(No. 201236)的支持。

参考文献 (References)

- [1] 许景周, 张希成 (2007) 太赫兹科学技术和应用. 北京大学出版社, 北京.
- [2] 张希成 (2003) 太赫兹科学与技术研究回顾. 物理, 5, 286-293.
- [3] 黄婉文,李宝军 (2006) 太赫兹波导器件研究进展. 激光与光电子学进展,7,9-16.
- [4] 钟任斌,周俊,刘盛纲 (2012) 太赫兹波导的研究进展. 电子科技大学学报, 2, 247-252.
- [5] Lu, J.Y., Yu, C.P., Chang, H.C. and Chen, H.W. (2008) Terahertz air-core microstructure fiber. *Applied Physics Letter*, 92, 064105-1-064105-3.
- [6] Nielsen, K., Rasmussen, H.K., Adam, A.J.L. and Planken, P.C.M. (2009) Bendable low-loss Topas fibers for the terahertz frequency range. *Optics Express*, 17, 8592-8601.
- [7] Khanarian, G. (2001) Optical properties of cyclic olefin copolymers. *Optics Engineering*, 40, 1024-1029.
- [8] 江源, 邹宁宇 (2002) 聚合物光纤. 化学工业出版社, 北京, 62-68.

- [9] Kong, D.P. and Wang, L.L. (2009) Ultrahigh-resolution fiber-optic image guides derived from Microstructured polymer optical fiber performs. *Optics Letters*, **34**, 2435-2437.
- [10] Saitoh, K. and Koshiba, M. (2003) Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. *Optics Express*, **11**, 3100-3109.
- [11] Ung, B., Mazhorova, A. and Dupuis, A. (2011) Polymer microstructured optical fibers for terahertz wave guiding. *Optics Express*, **19**, B848-B861.
- [12] Nielsen, K., Rasmussen, H.K. and Jepsen, P.U. (2010) Broadband terahertz fiber directional coupler. *Optics Letters*, **35**, 2879-2881.