# MOCVD工艺腔体PM后调机率的改善方法

## 朱亮

上海华力微电子有限公司,上海 Email: 284276441@qq.com

收稿日期: 2021年6月19日; 录用日期: 2021年7月22日; 发布日期: 2021年7月29日

## 摘要

MOCVD工艺用于生长接触窗中的TiN薄膜。MOCVD的成膜厚度和均一性因受温度和工艺气体分布影响较大,导致PM后调机率很高,影响机台的Uptime。通过对handoff的管控,实现Wafer温度偏低区域的温度提升;通过By Kits和By腔体的CO管控,实现Wafer实际成膜温度的有效控制;通过管控Shower Head每圈孔洞直径均值的最大差值 < 30 µm,实现对工艺气体分布的有效管控;以上三种方法同时使用,MOCVD工艺腔体PM后的调机率由64%降低到32%,有效地提高了设备Uptime。

#### 关键词

膜厚,均一性,调机率

# Improvement Method of Adjustment Rate on MOCVD Process Chamber after PM

#### **Liang Zhu**

Shanghai Huali Microelectronics Corporation, Shanghai Email: 284276441@qq.com

Received: Jun. 19<sup>th</sup>, 2021; accepted: Jul. 22<sup>nd</sup>, 2021; published: Jul. 29<sup>th</sup>, 2021

#### Abstract

The TiN thin films in contact windows are grown by MOCVD. The film thickness and uniformity of MOCVD are greatly influenced by temperature and process gas distribution, resulting in a high adjustment rate after PM, which affects the Uptime of the machine. Through the control of handoff, the temperature in the low temperature area of wafer can be increased; through CO control of By Kits and By process chamber, effective control of wafer actual film forming temperature is realized; effective control of process gas distribution is realized by controlling the maximum differ-

ence of average pore diameter of each circle of Shower Head < 30  $\mu$ m; when the above three methods are used at the same time, the adjustment rate of MOCVD chamber after PM is reduced from 64% to 32%, which effectively improves the Uptime of the equipment.

## **Keywords**

Film Thickness, Uniformity, Adjustment Rate

Copyright © 2021 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC ① Open Access

# 1. 引言

接触窗(Contact window)是前后端工艺的连接通道(图 1),受填孔能力的限制,接触窗中的 TiN 从 0.18 µm 开始采用金属有机物化学气相沉积 MOCVD (Metal-Organic Chemical vapor Deposition)工艺[1] [2]。 MOCVD 工艺由 TDMAT (四次二甲基铵基钛)在一定的温度和压力下分解后先沉积 TiN 薄膜,再利用 Plasma treatment,减低薄膜中的碳,氢杂质,最后得到低阻、致密的 TiN 薄膜。沉积和 Plasma treatment 是套循环步骤。为了将杂质去除的更加彻底,芯片制造中一般进行多次循环,每个循环沉积的薄膜厚度 尽可能薄一些。



Figure 1. Chip structure diagram 图 1. 芯片结构图

RC Delay 会严重影响芯片的性能,为了控制 RC 值,MOCVD 工艺对成膜均一性和厚度有严格的要求。MOCVD 工艺对温度极其敏感,尤其是腔体 Kits PM 后,因为腔体 Condition 变化大,需要通过多次 工艺参数调机,才能满足工艺的膜厚和均一性要求,严重影响了机台的 Uptime。本文从 MOCVD 腔体气流方向和 Kits PM 过程中更换的部件出发,分析影响 MOCVD 工艺成膜厚度和均一性的可能因素,通过

在 PM 过程中提前干预,降低 Kits PM 后的调机率,提高机台 Uptime。未做任何干预的 PM 后的 RS map (图 2),靠近 Pump port 的上半圈 RS 值明显偏高,导致成膜均一性不符合工艺规格要求,需要通过调机 来满足工艺要求。



Figure 2. RS Map 图 2. 方块电阻分布图

## 2. 原因分析

MOCVD 工艺时:Wafer 坐落在腔体中心位置的 Heater 上,TDMAT 经过 LFM 流量控制和 Injector 气化后,由 Carrier gas 带入工艺腔体顶部,再通过顶部 Shower head 均匀分散地流到工艺腔体里的 Wafer 上参与反应[3]。因 TiN 成膜的速度和温度成正相关,为了保证成膜的均一性,Wafer 的背面在沉积薄膜 的步骤会通入 Backside gas,使 Wafer 受热更加均匀,wafer 的四周边缘底部会有 Purge gas,防止 Wafer bevel 发生薄膜沉积。所有多余的反应气体途径左侧 Pumping port,经过 Rough Valve 由 Pump 抽走(图 3)。





Heater 的四周由 Outer Shield, inner shield, Chamber Insert 环绕, 防止 Chamber body 发生薄膜沉积。 Kits PM 时,每次都需要更换用于分散气流的 Shower head 和用于保护 Chamber body 的 Outer shield, inner shield 及 Chamber insert。

由 MOCVD 工艺的气流方向及 Kits PM 更换的部件可以推测[4] [5]:

1) 靠近 Pumping port 抽力大,气流运动快导致该区域 Wafer 温度偏低,造成上半圈成膜偏薄;

2) 用于保护 Chamber body 的 Kits, 其表面的 Condition 会影响腔体内部的热环境,对成膜的厚度影 响较大;

3) 用于分散工艺反应气体的 Shower head 的孔径大小可以直接影响每个区域参与反应的气体量,对成膜均一性有密切的相关性。

#### 3. 验证实验

#### 3.1. 实验方案

针对上述的三个推测,设计3个对应的实验改善方案:

方案 1: 将腔体的 handoff 中心值-80 Step, 提升靠近 Pumping port 区域 Wafer 的实际温度。Wafer 坐落在 Heater 上作业时,为了防止 wafer bevel 沉积薄膜,会在 wafer Edge 位置流 Purge gas。Wafer 上接 触到 Edge Purge gas 的区域 Wafer 温度相对较低。实验中通过将 Robot 的 handoff Extension 方向减少 80 step,将 Wafer 整体远离 Pumping port 0.5 mm 左右,使原本靠近 Pumping Port 端的 Wafer 被 Edge purge gas 影 响到的区域变小,提升 wafer 的温度。

方案 2: 根据每套 Kits 在每个腔体最近一次测机合格的 C0 为标准值,在 PM 过程中进行预调。C0 是 Heater 温度的 Offset 补偿值,每套 Recycle Kits 的 Condition 都会有一定的差异,安装到腔体后,Kits 的吸热量会有一定的差异,最终造成 Wafer 上的温度出现一定的偏差。通过调整 C0 来调节 MOCVD 工 艺腔体内 Heater 的实际温度,从而调整 Wafer 的工艺温度。

方案 3:对 Shower head 孔洞直径进行管控,确保工艺时工艺气体均匀分散到 Wafer 表面。成膜均一性由 Monitor Wafer 量测 49 个点 RS 值计算得到,量测点坐标以环型分部(图 4)。实验中通过将 Shower head 上被采样用于量测的孔洞位置也设置为环形分部,管控 Shower head 上 5 圈管控孔洞直径均值的差值最大值 < 30 μm,以保证工艺气体尽可能的分布均匀。



Figure 4. Section diagram of RS measurement points 图 4. RS 量测点分部图

### 3.2. 实验设备

3 个验证实验全部在上海华力微电子有限公司 FAB 内的 AMILBA01 和 AMILBA02 两台量产机台上的 4 个 TxZ 腔体上进行开展(图 5)。



Figure 5. Appearance picture of TxZ chamber 图 5. TxZ 腔体外观图

## 3.3. 实验结果与分析

实验 1: 依据 4 个腔体的中心值 Handoff, Extension 方向分别减少 80 Step 作为实验设定值(表 1), 观察 200 个 PM,统计整体的调机率。

 Table 1. Chamber handoff value setting

 表 1. 腔体 handoff 值设定

| Handoff—80 Step | 中心值 | 实验值    |        |
|-----------------|-----|--------|--------|
|                 | CH2 | 106240 | 106160 |
| AMILDAUI        | CH3 | 106095 | 106015 |
|                 | CH2 | 105980 | 105900 |
| AMILDA02        | CH3 | 106230 | 106150 |

实现结果显示,200个 PM 中需要通过调机的个数由原先的 128 个降低到 99 个。通过 Wafer handoff 的预调,Kits PM 后的调机率由 handoff 预调前的 64%降低到 49.5% (图 6)。

实验 2: 记录每套 Kits 在 4 个腔体测机合格的 C0 值(记录表格式见表 2),在下次该 Kits 安装到对应 腔体时,依据上一次记录的值作为标准值,在 PM 过程中进行预调,依据此方式观察 200 个 PM,统计整体的调机率。

实验结果显示,200个 PM 中需要通过调机的个数由原先的 99个进一步降低到 81个。通过预调 C0, Kits PM 后的调机率由 49.5%进一步降低到 40.5% (图 7)。



Figure 6. The adjustment rate after presetting of Handoff 图 6. 预调 Handoff 后的调机率

# **Table 2.** C0 record sheet 表 2. C0 记录表

| 日期        | Kits 刻号      | 安装腔体       | 测机合格时 C0 值 |
|-----------|--------------|------------|------------|
| 2017/2/1  | TxZ Kits-001 | AMILBA01-2 | -7         |
| 2017/2/3  | TxZ Kits-008 | AMILBA02-2 | -9         |
| 2017/2/6  | TxZ Kits-005 | AMILBA01-3 | -9         |
| 2017/2/8  | TxZ Kits-011 | AMILBA02-3 | -8         |
| 2017/2/11 | TxZ Kits-002 | AMILBA01-2 | -10        |
| 2017/2/13 | TxZ Kits-016 | AMILBA02-2 | -8         |
| 2017/2/15 | TxZ Kits-007 | AMILBA01-3 | -6         |
| 2017/2/18 | TxZ Kits-015 | AMILBA02-3 | -8         |





实验 3: 管控 Shower head 上 5 圈管控孔洞直径均值的差值最大值 < 30 μm (管控表格式见表 3),依据此方式观察 200 个 PM,统计整体的调机率。

实验结果显示,200个 PM 中需要通过调机的个数由原先的 81个进一步降低到 64个。通过对 Shower head 孔洞直径的管控,Kits PM 后调机率由 40.5%进一步降低 32% (图 8)。

| 示意图       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |        |        |        |        |                            |        |        |         |  |
|-----------|-------------------------------------------------------|--------|--------|--------|--------|----------------------------|--------|--------|---------|--|
| 测试点       | 1                                                     | 17     | 9      | 25     | 8      | 24                         | 16     | 32     | 本次均值    |  |
| 孔径(直径 μm) | 697.71                                                | 699.72 | 701.57 | 707.61 | 706.20 | 702.09                     | 699.33 | 696.02 | 701.281 |  |
| 测试点       | 2                                                     | 18     | 10     | 26     | 7      | 23                         | 15     | 31     | 本次均值    |  |
| 孔径(直径 μm) | 702.15                                                | 710.82 | 714.74 | 709.39 | 712.13 | 707.73                     | 707.82 | 707.07 | 708.981 |  |
| 测试点       | 3                                                     | 19     | 11     | 27     | 6      | 22                         | 14     | 30     | 本次均值    |  |
| 孔径(直径 μm) | 702.16                                                | 712.44 | 714.94 | 713.87 | 714.28 | 713.89                     | 714.60 | 708.54 | 711.840 |  |
| 测试点       | 4                                                     | 20     | 12     | 28     | 5      | 21                         | 13     | 29     | 本次均值    |  |
| 孔径(直径 μm) | 716.62                                                | 714.74 | 711.68 | 716.52 | 718.99 | 720.78                     | 713.13 | 704.68 | 714.643 |  |
| 测试点       | 33                                                    | 34     | 35     | 36     | 37     | 本次均值最大值 – 本<br>次均值最小值(<30) |        | 13.361 | 本次均值    |  |
| 孔径(直径 μm) | 717.57                                                | 710.49 | 716.02 | 715.42 | 710.49 |                            |        |        | 713.998 |  |





# 4. 结论

综上所述, MOCVD 的成膜厚度和成膜均一性因受温度和工艺气体分布影响较大,导致 PM 后调机 率很高,对机台的 Uptime 影响较大。通过对 handoff 的管控,实现 Wafer 温度偏低区域的温度提升;通过 By Kits 和 By 腔体的 C0 管控,实现 Wafer 实际成膜温度的有效控制;通过管控 Shower head 每圈孔径

直径均值的最大差值 < 30 μm,实现对工艺气体分布的有效管控;以上三种方法同时使用,MOCVD 工 艺腔体 PM 后的调机率由 64%降低到了 32%,有效地提高了设备 Uptime。

## 致 谢

MOCVD工艺腔体是接触窗成膜工艺设备的瓶颈腔体,通过降低 MOCVD 工艺腔体 PM 后的调机率,可有效提升设备的 Uptime。感谢设备工程师张啸,黄磊在问题讨论和实验设计阶段的合理建议,感谢工艺工程师蔡俊晟帮忙提供 RS Monitor Wafer 量测坐标数据,感谢制造部同事帮忙安排机台时间用于开展实验数据的收集。

## 参考文献

- [1] 张汝京. 纳米集成电路制造工艺[M]. 北京: 清华大学出版社, 2014.
- [2] 许坚强. MOCVD 设备与现代 MOCVD 技术研究[J]. 山东工业技术, 2018(22): 119, 127.
- [3] 郑刚. MOCVD TiN 阻挡层薄膜工艺性能研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2008.
- [4] 赵丽丽. 高温大尺寸 MOCVD 反应室热场的数值分析与优化[D]: [硕士学位论文]. 济南: 济南大学, 2019.
- [5] 徐龙权, 方颂, 唐子涵, 刘新卫. MOCVD 反应室温度均匀性的研究[J]. 发光学报, 2017, 38(2): 220-225.