The Coupling Efficiency Study of Tapered Fiber End Faces

Yuan Hong, Lixing Dai, Qilong Tan, Jixiao Fan, Xinghua Tu

School of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing Email: https://www.hong263@126.com

Received: Oct. 15th, 2014; revised: Oct. 24th, 2014; accepted: Oct. 31st, 2014

Copyright © 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

The shape of fiber end has a relatively vital effect on related indices of fiber coupling. The higher the fiber transmission system is, the greater the effect of reflected light is on the system. The reflected light can feed back into the laser source, causing instability and noise of system, which leads to unreliable transmission information. Then we put forward the idea that the end face can be made into curved surface by tapering to match with fiber system and be connected with low loss which has extremely low back reflection and gets higher return loss. On the basis of fusion function of fiber fusion splicer, the fixture moves reversely in the melt when it discharges and the fiber obtains radial tension in the molten state that can change the fiber radial size distribution. Then fiber end face can form a curved surface with a certain cone. In this paper we measure return loss and insert loss of fiber end faces respectively corresponding to different discharge time and intensity. In comparison with fiber flat end, we conclude that return loss of tapered fiber can reach 36 dB and to our knowledge, we first time put forward the rule that insert loss changes when the coupling end distance changes.

Keywords

Fused Biconical Taper, End Coupling Efficiency, Return Loss, Insert Loss

拉锥光纤端面耦合效率的研究

洪 媛,戴丽杏,谭启龙,范稷骁,涂兴华

南京邮电大学光电工程学院,南京 Email: <u>hong263@126.com</u> 收稿日期: 2014年10月15日; 修回日期: 2014年10月24日; 录用日期: 2014年10月31日

摘要

光纤端面形状对光纤耦合的相关指标影响较大。光纤传输系统的速率越高,反射光对系统的影响越大。 反射光会沿着光纤反馈到系统的激光器光源中,引起系统的不稳定和噪声,使得光纤系统的传输信息不 可靠。因此我们提出通过拉锥将光纤端面制成曲面,而锥体曲面与光纤系统匹配,可以与光纤线路进行 低损耗连接,具有极低的后向反射,得到更高的回波损耗。基于光纤熔接机的熔接功能,在放电熔融时 使夹具反向移动,使光纤在熔融状态下获得径向拉力,可以改变光纤径向尺寸分布,光纤平端面可形成 具有一定锥体的曲面。本文测量了不同放电时间和放电强度条件下,相应形成的光纤端面的插入损耗和 回波损耗值,并与光纤平端面对比,得到回波损耗可达到36 dB,并通过测试和分析,我们首次提出插入 损耗随耦合端面距离改变的变化规律的结论。

关键词

熔融拉锥,端面耦合效率,回波损耗,插入损耗

1. 引言

社会经济的发展使人们对信息的需求急剧增加,信息量呈指数增长。光纤近 30 THz 的巨大潜在带宽 容量,使光纤通信成为支撑通信业务量增长最重要的技术。于是提高光纤端面的相关指标——如插入损 耗、回波损耗等至关重要,拉锥光纤技术应运而生。

通过研究耦合器的拉锥过程,人们研究了各种形状的拉锥。1985 年 W. Burns [1]证明了在加热火焰 不偏移情况下,拉锥光纤模型绝大多数符合抛物线型。为得到更丰富的拉锥光纤结构,人们设想在光纤 拉锥过程中,可以通过移动火焰来实现不同形状的拉锥模型,如正弦模型,多项式型,同时为满足器件 小型化和低损耗的要求,要求锥区短且引入的损耗低。由此 J. Love 等[2]人通过研究不同拉锥模型对损耗 的影响及其与拉锥长度的关系,提出了在最小长度内实现低损耗的锥区形状模型,并得出渐变条件。

研究表明,通过控制拉锥参数可以得到任意锥度的拉锥光纤。1991 年 R. Kenny 和 T. Birks [3]首次提出利用火焰复扫的方法实现任意形状的拉锥光纤,建立了拉锥速度和火焰复扫速度对拉锥光纤形状影响的理论模型。第二年,T. Birks [4]完善了这一模型,并以此为基础研制出相应的拉锥机,利用理论指导预测拉锥光纤的形状。2010 年,S. Pricking 和 H. Giessen [5]对复杂形状的拉锥进行了更加精确和详细的研究,在文章中他们考虑了加热火焰的移动以及火焰温度的分布对拉锥直径的影响,并通过实验,验证了模型的正确性,精确地得到了形状十分复杂的拉锥光纤。

近年来,人们开始研究不同材料光纤的拉锥以及探索拉锥光纤在传感方面的新用途。2010 年 N. Healy 等[6]人利用熔接机对硅材料光纤进行拉锥,利用硅对光的强束缚能力,形成了纳米量级的硅光波导,这 种光学元件为实现光的单向传输、光隔离器件等提供了一条新路径,为硅光电器件的应用提供了基础。 Eric Lepine [7]等人对硫化物光纤进行了拉锥实验,提高了硫化物光纤表面的倏逝场,增强了传感的灵敏 度。同时,利用拉锥光纤的表面倏逝场可以制成多种传感器,如压力传感器[8],湿度传感[9],化学传感 器[10] [11],液体折射率传感器[12],它们的基础均为桥型拉锥光纤。拉锥光纤在传感领域的应用由此可 见一斑。

桥型光纤(即拉锥后两锥端未拉断)示意图如图1。

桥型拉锥光纤结构主要分为三个部分: 原始光纤、锥形过渡区域及锥腰区域。从标准光纤到锥腰的 过渡过程中包层和纤芯的比例基本都保持不变。原则上只要拉锥时使锥区角度足够小,就可以将损耗控 制在任意小。但锥区角度越小,拉锥光纤的过渡区域也越长,对于拉锥光纤构成的器件来说太长的过渡 区对器件的封装、小型化和稳定性都极为不利,因此我们需要找到一个实现低损耗拉锥的基本条件,即 能实现低损耗要求的最小长度的锥区形状[13]。J. Love 和 W. Henry 等人[4]通过研究拉锥光纤锥区的模式 的变化,提出了光纤拉锥低损耗的条件: 渐变准则,低损耗拉锥的锥角可以通过该准则来确定。

在此基础上,人们又提出了异种光纤的熔融拉锥[14](从大数值孔径光纤传输到小数值孔径光纤)理论, 并获得低损连接效果,这为不同种光纤之间的耦合提供了一种简单实用的方法(图 2)。

本文的主要工作是对具有锥形端的单根光纤与平端面之间耦合效率进行分析研究,同时较为精准的 得到最大耦合效率时拉锥机的主要放电参数(图 3) [15]。

所使用的熔融设备是南京吉隆光电生产的光纤熔接机,并在其原有熔接功能的基础上加以改造。当 处理好的两根平端面光纤按照熔接的步骤开始放电熔接时,固定该两根光纤的夹具先是沿着光纤轴向靠 拢,使得两光纤端面熔接,然后再沿着光纤轴向分离,光纤获得轴向拉力,从而改变端面附近的光纤轴

图 3. 拉锥光纤与平端面耦合

向尺寸分布,并且在表面张力的作用下,形成具有一定锥体的曲面端面。本文研究了不同放电条件(放电时间和放电强度)下,测量相应光纤端面与平端面光纤耦合时的插入损耗和回波损耗值,并与两平端面光 纤耦合时的情况进行了对比分析,得到了插入损耗以及回波损耗与耦合距离的对应规律。

2. 光纤耦合理论

2.1. 回波损耗

回波损耗[16],又称为反射损耗,存在于光纤连接器、光纤隔离器等器件中,是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。它是指在光纤连接处,后向反射光(连续不断向输入端传输的散射光)相对输入光的比率的分贝数,回波损耗愈大愈好,以减少反射光对光源和系统的影响。通常要求反射功率尽可能小,这样就有更多的功率传送到负载。典型情况下设计者的目标是至少10 dB 的回波损耗。回波损耗 RL 计算方法为:

$$L_{R} = -10 \lg (P_{r}/P_{i})$$

式中 *P_i* 是入射到器件上的功率, *P_r* 是被反射的功率。30 dB 或 40 dB 的回波损耗是设计优良的元器件的 典型代表值。

2.2. 插入损耗

插入损耗[16]是指在传输系统的某处由于元件或器件的插入而发生的负载功率的损耗,它表示为该元 件或器件插入前负载上所接收到的功率与插入后同一负载上所接收到的功率以分贝为单位的比值,广泛 存在于光无源器件中。插入损耗是指发射机与接收机之间,插入电缆或元件产生的信号损耗,通常指衰 减。插入损耗以接收信号电平的对应分贝(dB)来表示。

通道的插入损耗是指输出端口的输出光功率与输入端口输入光功率之比,以 dB 为单位。插入损耗与输入波长有关,也与开关状态有关。定义为:

$$L_{IL} = -10 \lg (P_{out}/P_{in})$$

式中 *P*_{in}表示输入到输入端口的光功率, *P*_{out}表示从输出端口接收到的光功率。好的机械开关的插入损耗可以小于 1.5 dB;光隔离器典型插入损耗约为 1 dB。

2.3. 光纤熔融拉锥

光纤拉锥是一种重要的光纤后处理技术,通过拉锥可以改变光纤的形状、光学性能以及制作各种光 纤器件,对拓展光纤的应用具有重要作用。

熔融拉锥技术是指将两根或数根光纤剥去涂覆层,在通光功率监控下用高温烧结拉制成双锥形波导, 从而制得全光纤器件的一种技术,因其拉制的光纤大多为双锥形,故又称为 FBT(Fused Biconical Taper) 技术。其中加热大多用氢气烧,或为获得高温用氢加氧烧,但日本 NTT 的熔融拉锥机是电加热技术。

生产拉锥机的厂家有很多,国际上著名的公司有美国的 E-TEK [17]和韩国的 Korea Electric Terminal Co., Ltd. [18],国内有名的公司有上海瞬渺光电技术有限公司[19]和南京吉隆光纤通信股份有限公司[20]。 拉锥技术最早是人工控制拉锥,后来用电脑控制,自动化程度有所提高,但光纤的剥覆、清洁,均用手 工操作。本实验中使用的是南京吉隆光纤通信股份有限公司生产的光纤熔接机。

3. 实验方法

本实验中,着眼于熔融拉锥机的两个放电参数:放电时间和放电强度(偏重)。为缩小实验变量范围,

进行了大量预实验,最终确定放电参数范围为 0.80 V~1.05 V;放电时间暂定为 2850 ms 和 2950 ms。

3.1. 回波损耗对比

在该过程中,保持拉锥机的放电时间为2850 ms,改变放电强度值(0.8 V,0.85 V,0.9 V,0.95 V,1.05 V),测出各自的回波损耗。为更加直观的看出改善效果,做出各自的折线图,并将五个不同放电强度值的结果展示在一张图中,可以比较不同强度下回波损耗的提高程度。

图 4~8 为放电强度 0.8 V, 0.85 V, 0.9 V, 0.95 V, 1.05 V 时回损仪测得的拉锥后及平端面回波损耗:

Figure 4. Return loss of flat end and tapered end when discharge intensity is 0.8 V (Table 5)

图 4. 平端面与放电强度为 0.8 V 时拉锥后的回波损耗(表 5)

Figure 5. Return loss of flat end and tapered end when discharge intensity is 0.85 V (Table 5)

图 5. 平端面与放电强度为 0.85V 时拉锥后的回波损耗 (表 5)

Figure 6. Return loss of flat end and tapered end when discharge intensity is 0.9 V (Table 5) 图 6. 平端面与放电强度为 0.9 V 时拉锥后的回波损耗(表 5)

由以上五张图可以看出,拉锥光纤的回波损耗明显大于平端面,即拉锥后回波性能明显改善。 图 9 反映了不同放电强度下拉锥光纤回波性能:

从图可以直观看出,在 0.8 V~1.05 V 范围内,放电强度 0.85 V 时,拉锥光纤的回波损耗大于其他强度。

3.2. 插入损耗对比

研究插入损耗时,熔融拉锥机的放电时间设定为 2950 ms,并根据上述回波损耗实验结果将放电强度 分别设定为 0.8 V、0.9 V,逐渐增大端面间距离(以拉锥机显示屏幕的最小分辨值 10 μm 为单位),记录下 输出端光功率,并根据插入损耗公式 *IL* = -10lg(*P*₀/*P*_i)将光功率转换为相应的 dB 值。重复 30 组实验将测 量平均值作为实验结果并与未拉锥(平端面间耦合)时数据进行比较。制成折线图如图 10,图 11 所示:

从折线图看出,经过拉锥,光纤端面的输出功率不再是单调递减,而是先有上升趋势然后逐步下降; 且由图直观看出,放电强度为 0.8 V时的锥形在端面耦合距离在 20~120 μm 之间,其输出光功率及插入 损耗均明显优于 0.9 V放电拉锥和平端面。而 0.9 V放电强度拉锥的插入损耗性能与平端面相差不大。

4. 结果分析

4.1. 实验结论

通过回波损耗数据与折线图可以看出,拉锥光纤与平端面耦合后的回波损耗,明显高于未经拉锥情

Figure 9. Comparison of return loss between 5 different discharge intensity (Table 5)

况,即拉锥光纤的回波性能优于未经拉锥光纤,可达到 30 dB 以上。

分析插入损耗实验数据及折线图,可以发现在满足一定的端面耦合距离条件下,拉锥后光纤的耦合 性能优于未经拉锥的平端面光纤,即可利用熔融拉锥提高光纤之间的耦合效率。 本实验采用的是南京吉隆公司生产的熔融拉锥机,并在该机器上完成熔融拉锥、耦合等操作。在实际光纤耦合应用过程中,端面距离在几 µm 范围内,而该拉锥机的屏幕最小刻度单位为 10 µm,精确度不高。而且熔融拉锥过程具有偶然性,可控性不够。端面形状对实验结果有影响,平端面的处理均为手工操作,不能保证端面处理没有瑕疵。由肉眼判断端面距离的移动变化,也会有一定的误差。

本实验着眼于锥形光纤与普通光纤耦合效率的比较。从实验和理论都可以看出锥形光纤的锥角和锥 形端面的大小对耦合效率有很大影响。熔融拉锥技术为不同光纤之间的耦合提供了一种简单实用的方式, 实现光纤激光器和放大器系统中不同参量光纤的低损耦合,采用光纤拉锥方法来实现光纤连接。

4.2. 结论展望

本实验提出了提高光纤传输系统回波损耗的一种可行方法。随着 Gb/s 级高速率光纤传输系统、相干 检测系统、调频调幅模拟系统的发展,光纤连接器端面引起的反射已成为研究人员日益关注的问题,为 这些系统提高高回波损耗势在必行。徐开凯博士等人[21] [22]实现了一种标准 CMOS 工艺兼容的硅光源, 采用该硅光源可以实现光电子互联和 IGBT(绝缘栅双极型晶体管)开关。相对于电互连,光互连的优势很 明显:大带宽、低串扰噪声、低驱动电源和系统、长距离互连时有良好的时钟同步性能以及设计简化等。 光互连在长距离的通信中已得到了广泛的应用,将光互连应用领域进一步推进到芯片间、乃至芯片上, 实现芯片级光互连。

初步推测,本实验高回波损耗成果可以在一定程度上解决该种新型硅光源和光纤之间耦合的高损耗问题,并可以相应设计出具有低插入损耗、高回波损耗的光无源器件,如光纤活动连接器、光纤隔离器、 光耦合器及光开关等,真正实现高速低损耗长距离光通信。

基金项目

本研究课题由"南京邮电大学校研究项目(JG00613JX61)"支持。

参考文献 (References)

- [1] Burns, W.K., Abebe, M. and Villarruel, C.A. (1985) Parabolic model for shape of fiber taper. *Applied Optics*, 24, 2753-2755.
- [2] Love, J.D., Henry, W.M., et al. (1991) Tapered single-mode fibres and devices part 1: Adiabaticity criteria. *IEEE PROCEEDINGS-J*, **138**, 343-354.
- [3] Kenny, R.P., Birks, T.A. and Oakley, K.P. (1991) Control of optical fiber taper shape. *Electronics Letters*, **27**, 1654-1656.
- [4] Birks, T.A. and Li, W. (1992) The shape of fiber tapers. *Journal of Lightwave Technology*, **10**, 432-438.
- [5] Pricking, S. and Giessen, H. (2010) Tapering fibers with complex shape. Optics Express, 18, 3426-3437.
- [6] Healy, N., Sparks, J.R., Sazio, P.J.A., et al. (2010) Tapered silicon optical fibers. Optics Express, 18, 7596-7601.
- [7] Lepine, E., Yang, Z.Y., Gueguen, Y., et al. (2010) Optical micro fabrication of tapers in low-loss chalcogenide fibers. *Journal of the Optical Society of America B-Optical Physics*, **27**, 966-971.
- [8] Bobb, L.C., Krumboltz, H.D. and Shankar, P.M. (1991) Pressure sensor that uses bent biconically tapered single-mode fibers. *Optics Letters*, **16**, 112-114.
- [9] Corres, J.M., Arregui, F.J. and Matias, I.R. (2006) Design of humidity sensors based on tapered optical fibers. *Journal of Lightwave Technolog*, **24**, 4329-4336.
- [10] Stewart, G. and Culshaw, B. (1994) Optical waveguide modeling and design for evanescent field chemical sensors. *Optical and Quantum Electronics*, **26**, S249-S259.
- [11] 胡建东,林志立 (2007) Pd-Ag 合金膜拉锥光纤 H2 敏传感器研究. 光电子激光, 3, 310-313.
- [12] 熊贻坤 (2009) 基于熔融拉锥光纤的液体折射率传感器. 光学学报, 7, 1956-1960.
- [13] 奚小明 (2010) 拉锥光纤的特性和应用研究. 硕士论文, 国防科学技术大学, 长沙.

- [14] 彭博, 张海涛, 闫平, 巩马里 (2009) 熔融拉锥技术在光纤传输耦合中的应用. 激光技术, 5, 470-472.
- [15] 薛春荣 (2006) 熔锥光纤的特性研究. 激光与红外, 9, 886-896.
- [16] Palais, J.C. (2011) 王江平, 等, 译. 光纤通信. 第五版, 电子工业出版社, 北京, 235-239.
- [17] 听 Leo 聊光器件公司: (3) E-Tek 的故事. http://www.c-fol.net/news/content/7/201408/20140803190319.html
- [18] KET ENGINEERED. http://www.ket.com/
- [19] 上海瞬渺光电技术有限公司. http://www.opticsjournal.net/Companys/rays.htm?action=index,2014.10.22
- [20] 南京吉隆光纤通信股份有限公司. http://www.njjloc.com/
- [21] Xu, K. (2013) Current-voltage characteristics and increase in the quantum efficiency of three-terminal gate and avalanche-based silicon LEDs. *Applied Optics*, **52**, 6669-6675.
- [22] Xu, K. (2014) On the design and optimization of three-terminal light-emitting device in silicon CMOS technology. *IEEE Journal of Selected Topics in Quantum Electronics*, **20**.

附录: 拉锥光纤插入损耗数据

Table 1. Output power when discharge intensity is 0.8 V 图 1. 0.8 V 输出功率

			输出现	力率 (μW),	放电时间	司 2950 ms,	放电强度	度 0.8 V,	光源功率1	.03 mW			
端面距 离/μm	0	10	20	30	40	50	60	70	80	90	100	110	120
	808	812	852	827	790	728	600	503	395	336	270	145	90
	780	804	830	808	773	716	660	586	525	458	407	226	130
	820	930	945	915	890	818	742	642	568	485	416	242	143
	666	720	736	705	662	615	512	453	382	282	254	143	85
	686	694	723	714	695	656	608	548	492	436	362	195	114
	775	826	852	902	875	817	736	630	539	470	378	158	100
	780	835	904	890	860	812	718	632	543	458	370	185	108
	663	687	724	703	668	624	554	468	416	363	305	168	100
	732	798	830	814	772	672	588	508	423	339	290	138	84
	684	743	760	738	702	648	565	475	368	328	272	134	78
	633	672	690	676	644	607	555	507	455	407	360	207	122
	731	819	827	843	813	767	690	608	553	483	433	209	144
	749	763	809	820	783	747	690	630	573	505	435	273	183
	696	783	819	773	752	719	640	555	483	414	333	209	118
	721	808	829	790	750	683	567	505	453	390	328	209	116
	710	755	790	764	730	667	579	483	394	337	283	139	84
	780	836	905	891	865	812	718	633	545	457	375	185	109
	775	734	682	625	580	528	465	408	362	315	281	165	102
	865	935	884	886	846	784	730	657	600	519	474	264	162
	732	818	854	842	813	765	693	618	552	485	422	220	134
	750	762	810	813	782	748	681	629	563	508	432	270	167
	720	805	818	792	748	682	565	504	454	399	338	208	128
	695	780	818	770	756	721	638	556	488	414	358	183	112
	816	824	863	826	796	723	602	543	434	401	326	212	148
	780	824	897	862	811	732	645	576	502	473	365	236	152
	667	724	735	706	662	637	604	541	486	409	313	189	128
	710	755	790	764	730	667	579	483	394	337	283	139	94
	702	818	836	796	748	688	596	505	454	392	328	204	109
	820	928	944	911	889	817	744	640	567	485	414	244	141
	782	833	901	889	866	814	712	632	540	455	372	179	106

			输出功	功率(μW),	放电时间	2950 ms,	放电强度	0.9 V,	光源功率 1.0	02 mW			
端面距离 /μm	0	10	20	30	40	50	60	70	80	90	100	110	120
	740	780	746	731	706	665	592	528	453	398	348	194	128
	460	562	583	532	514	478	424	398	365	312	287	172	108
	708	746	707	646	548	415	382	312	267	238	200	138	81
	630	720	698	664	628	582	532	498	472	415	382	123	95
	554	613	594	542	423	349	326	254	203	158	134	79	52
	685	743	708	684	623	516	498	385	338	298	235	186	98
	705	734	753	728	705	668	612	554	480	427	379	211	126
	727	715	685	630	535	507	453	417	357	306	273	206	107
	697	730	749	715	673	601	546	507	435	387	323	144	96
	706	721	743	713	687	633	578	523	446	378	307	128	87
	700	734	769	721	698	632	544	507	469	418	362	169	101
	789	843	791	703	643	605	557	503	445	407	327	165	107
	820	865	856	841	794	772	578	420	333	293	214	121	78
	902	835	807	828	786	712	653	571	474	409	354	183	103
	726	816	803	775	708	627	543	458	394	332	281	156	97
	597	653	682	655	606	528	420	368	292	254	189	123	82
	700	734	719	703	679	628	543	462	416	340	298	153	98
	813	895	871	855	803	742	662	578	496	425	365	184	108
	755	720	645	626	578	550	474	380	305	260	241	146	103
	538	598	556	548	515	460	361	273	244	175	143	76	51
	684	705	591	624	526	496	442	390	325	255	240	143	98
	713	720	741	708	688	636	582	526	457	378	305	134	81
	705	742	738	711	698	662	609	555	482	417	364	209	124
	698	738	725	702	675	613	551	502	443	388	321	147	101
	666	712	698	671	614	521	446	385	338	298	234	185	92
	740	776	736	725	702	668	597	519	455	401	349	194	124
	700	733	765	723	688	641	564	506	456	402	317	132	78
	580	624	601	562	487	405	346	298	224	176	134	87	56
	727	734	702	667	598	547	496	408	316	265	218	104	89
	788	825	791	706	644	608	549	502	451	406	322	158	101

Table 2. Output power when discharge intensity is 0.9 V 图 2. 0.9 V 输出功率

拉锥光纤端面耦合效率的研究

Table 3. Output power without tapering 图 3. 平岸面输出功率

国 ふ 十 垧	囲制山り	J Ý											
未拉锥平端面输出功率(µW),光源功率1.03 mW													
端面距离 /um	0	10	20	30	40	50	60	70	80	90	100	110	120
	680	715	650	593	540	490	428	383	343	308	276	168	112
	774	810	854	758	643	578	508	436	362	343	310	186	122
	738	818	748	685	592	535	468	423	368	319	293	177	115
	708	762	645	610	512	493	440	378	339	305	275	178	121
	870	754	682	637	523	484	408	359	324	272	246	156	111
	760	666	572	558	527	494	459	428	393	354	323	208	133
	870	905	885	746	673	601	535	474	422	379	339	206	136
	960	924	851	734	674	612	538	463	424	377	340	208	141
	760	666	572	558	527	494	459	428	393	354	323	208	133
	878	809	763	702	622	573	505	453	407	363	316	202	134
	659	743	719	693	621	556	503	445	392	357	326	205	120
	662	723	685	643	562	519	463	413	376	334	292	190	126
	978	957	830	762	703	632	543	488	432	381	345	205	132
	868	796	734	697	615	581	514	469	427	382	344	217	142
	886	817	765	717	679	575	524	467	417	368	327	205	135
	915	877	826	743	669	603	527	479	418	374	339	204	138
	949	868	789	695	553	472	436	381	345	301	248	172	116
	968	715	672	619	573	507	476	420	381	345	330	192	136
	894	856	808	766	675	606	525	473	418	363	328	208	138
	767	724	681	632	605	554	503	449	398	355	319	209	139
	901	862	828	763	699	621	553	505	441	390	356	226	148
	920	860	775	645	572	522	468	425	386	340	313	195	128
	968	892	854	782	656	593	508	445	389	351	308	184	126
	998	962	872	781	654	603	534	471	412	372	324	201	131
	880	810	780	745	650	573	514	460	401	296	263	171	115
	925	852	782	665	608	545	496	429	393	351	319	195	130
	801	768	713	615	564	482	442	390	334	292	264	159	105
	815	730	628	574	512	468	408	363	330	291	266	160	104
	902	812	797	670	608	548	483	422	384	343	308	185	121
	887	813	767	708	623	575	506	455	408	366	315	203	134

Table 4. Average output power (Table 1, Table 2 and Table 3) 图 4. 平均变化值(表 1、表 2 和表 3)														
输出功率 /μW	端面耦 合距离 /10 µm	0	1	2	3	4	5	6	7	8	9	10	11	12
放电强度/V														
0.8		740.9333	3 794.1666	821.9	801.8333	768.3666	713.8	632.5333	555.2666	483.4333	418	352.5666	195.9333	119.7
0.9		698.4333	3 735.5333	718.4333	8 687.9666	639.0666	582.2333	3 5 1 5 . 3 3 3 3	449.5666	387.7	333.8666	5 281.5333	151.6666	95
未拉锥 (平端面)		851.3666	5 808.8666	750.9	683.2	607.8	549.6333	8489.1333	435.8	388.5666	344.2	309.1666	192.7666	127.4

Table 5. Return losses under five different discharge intensities 图 5. 五种放电强度下回波损耗

放电强度 0.8 V 回波损耗 \dB	对应平端面回 波损耗\dB	放电强度 0.85 V 回波损耗\dB	对应平端面回 波损耗\dB	放电强度 0.9 V 回波 损耗\dB	对应平端面回 波损耗∖dB	放电强度 0.95 V 回波 损耗\dB	对应平端面回 波损耗∖dB	放电强度 1.05 V 回波 损耗\dB	对应平端面回 波损耗\dB
30.4	17.6	33.5	17.8	31.3	17.4	28.9	18.3	28.8	17.2
33.8	17	31.1	17.2	30.6	17.6	29.7	17.6	29	18.1
32.2	17.4	34.2	17.9	31.2	18	27.7	17.2	29.3	17.2
32.6	17.3	35.7	17.4	29.9	17.2	27.9	17.3	28.7	17.5
30.2	17.3	32.6	17.8	31.4	17.2	30.5	17.5	26.8	17.4
31.7	17.6	33.6	17.2	32	17.1	28.5	17.2	28.3	18.2
31.5	17.3	35.5	17.2	31.7	18	29.9	17.9	28.8	18
30.6	17.6	35.4	18.2	31.5	17.6	27.9	17.3	28.6	18
31.3	17	31.3	17.3	31.4	17.2	28.3	17.6	28.1	18.6
31.5	17.1	32.7	17.1	30.6	17.3	30.2	17.6	28.9	17.2
32.1	17.2	32.1	18.5	29.8	18	29.2	18	27	17.2
32	18	34.3	18.1	31.2	18.1	28.7	17.8	29.3	17.1
31.9	18.1	33.8	17.6	32.1	17.8	28	17.2	28.5	17.4
31.8	17.9	32.9	17.6	31.6	17	28.4	17.2	26.9	17.6
30.8	17.8	35.4	17	31.1	17.1	27.7	17.3	28.8	18
31.6	18.1	31.3	17.6	30.8	17.2	29.2	17.8	30	18.2
32	18.3	35.5	17.2	32	17.6	28.8	17.4	28.5	17.6
30.8	17.4	34.6	17.3	31.8	17.4	28.7	17.6	30.2	18.3
30.9	17.4	33.2	17	31.6	17.4	29.6	17.2	28.1	18.6
31.1	17.1	34.2	17.1	32.1	17.9	30.1	18	27.6	17.8