Published Online March 2015 in Hans. <a href="http://www.hanspub.org/journal/pm">http://www.hanspub.org/journal/pm</a> http://dx.doi.org/10.12677/pm.2015.52011

# A New Construction for Inverse Semigroups

#### Shanshan Liu, Junying Guo, Xiaojiang Guo

College of Mathematics and Information Science, Jiangxi Normal University, Nanchang Jiangxi Email: liushanshan199008@126.com, 651945171@qq.com, xjguo@jxnu.edu.cn

Received: Feb. 26<sup>th</sup>, 2015; accepted: Mar. 8<sup>th</sup>, 2015; published: Mar. 12<sup>th</sup>, 2015

Copyright © 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/



#### **Abstract**

Thenotion of FC-system is introduced. In this note, a new construction for inverse semigroups is established in terms of Munn semigroups and Clifford semigroups.

## **Keywords**

Fundamental Inverse Semigroup, Clifford Semigroup, Inverse Semigroup

# 逆半群的一新构造

#### 刘姗姗,郭俊颖,郭小江

江西师范大学数学与信息科学学院, 江西 南昌

Email: liushanshan199008@126.com, 651945171@qq.com, xjguo@jxnu.edu.cn

收稿日期: 2015年2月26日; 录用日期: 2015年3月8日; 发布日期: 2015年3月12日

## 摘要

本文定义FC-系统的概念。从这一概念出发,利用Munn半群和Clifford半群建立了逆半群的一新结构。

## 关键词

基本逆半群,Clifford半群,逆半群

## 1. 引言

逆半群是每个元素都只有一个逆元的正则半群。等价地,正则半群是逆半群当且仅当其幂等元集构成交换子半群。这类半群是离群最近的半群类之一,具有许多"群类似"性质,在半群理论研究中具有重要地位,也有非常丰富的研究成果(见[1][2])。

逆半群有两类重要子类:一类是 Clifford 半群。所谓 *Clifford* 半群是具有中心幂等元的正则半群。这 类半群可以表示为一些群的半格。

另一类是基本逆半群(fundanmental inverse semigroup)。令S为逆半群,E为S的幂等元集。S上的同余 $\rho$ 称为幂等元分离同余,如果 $\rho \cap (E \times E)$ 是S上的恒等映射。我们用H, L, R, D, J记通常的 Green关系。众所周知, $\rho$ 是S上的幂等元分离同余当且仅当 $\rho \subseteq H$ 。记 $\mu$ 为S上的最大幂等元分离同余。逆半群称为基本逆半群,如果其最大幂等元分离同余为恒等映射。更有意思的是, $S/\mu$ 是基本逆半群。这说明,任一逆半群都是以基本逆半群作为同态像。特别地,Munn 指出:一个半群是基本逆半群当且仅当它同构于某个 Munn 半群 $T_E$ 的全子逆半群(可见,[3])。

Clifford 半群和基本逆半群都具有简明结构。能否从基本逆半群(Munn 半群)出发构造逆半群?这是一个非常自然的问题。受到文献[4] [5]鼓励,本文将给出逆半群基于 Munn 逆半群和 Clifford 半群的一种构造方法。

## 2. 定理

令 S 为逆半群,记 E(S) 为 S 的幂等元集。若 t 为 S 的元,则我们用  $t^{-1}$  记 t 的逆元。设

Y: 半格;

T: 以 + k Y 为 幂 等 元 集 的 基 本 逆 + 群:

C: 以半格 Y 为幂等元集的 Clifford 半群;

进一步,设 $C = [Y; G_{\alpha}, \phi_{\alpha,\beta}]$ 是 Clifford 半群C分解成群 $G_{\alpha}(\alpha \in Y)$ 的半格分解。记 End(C)为C到自身的半群同态半群。定义

$$\phi: T \to \text{End}(C); t \mapsto \phi_t$$

其中  $\phi_t:C \to C; \ x \mapsto x \phi_t \in G_{\left(x^{-1}x\cdot t\right)^{-1}x^{-1}x\cdot t}$ ,且

$$F: T \times T \to C; \quad (s,t) \mapsto f_{st} \in G_{(st)^{-1}st}$$

定义 2.1: 五元组 $(Y;T,C;\phi,F)$ 称为 FC -系统,如果

- (I1) 对于任意  $s,t,u \in T$ , 有  $f_{st,u}f_{s,t}\phi_u = f_{s,tu}f_{t,u}$ ;
- (I2) 对于任意  $s,t \in T$ ,  $x \in C$ , 有  $x\phi_s\phi_t = (x\phi_{st})f_{s,t}$ ;
- (I3) 对于任意  $p,q \in Y, f_{p,q} = pq$ ;
- (I4) 对于任意  $s \in Y$ ,  $x \in C$ ,  $x\varphi_s = xs$ ;
- (I5) 对于任意  $s \in T$ ,  $f_{s,s^{-1}s} = s^{-1}s = f_{s^{-1},s}$

任给 FC -系统  $(Y;T,C;\phi,F)$ , 构作集合

$$FC = FC(Y; T, C; \phi, F) = \{(t, x) \in T \times C : x \in G_{r-1}\}$$

在集合 FC 上, 定义

$$(s,x)\circ(t,y)=(st,f_{s,t}(x\phi_t)y)$$

注意到, $f_{s,t}x\phi_t \in G_{(st)^{-1}st}$ , $y \in G_{t^{-1}t}$ ,易知, $f_{s,t}(x\phi_t)y \in G_{(st)^{-1}st}$ ,于是 $(st,f_{s,t}(x\phi_t)y) \in FC$ ,从而FC 关于运算。封闭。进而, $(FC,\circ)$ 为逆半群。

下面是本文的主要结果。

**定理 2.2:** 令 $(Y;T,C;\phi,F)$ 为FC-系统,则 $FC(Y;T,C;\phi,F)$ 是逆半群。反过来,任一逆半群均可以这样构作。

#### 3. 定理证明

本节我们给出定理 2.2 的证明。

**引理 3.1:** 令 $(Y;T,C;\phi,F)$ 为 FC -系统,则  $FC(Y;T,C;\phi,F)$  是逆半群。

**证明**: 对于 $(s,x),(t,y),(u,z) \in FC$ , 我们有

$$\begin{aligned} \left[ (s,x) \circ (t,y) \right] \circ (u,z) &= \left( st, f_{s,t} \cdot x \phi_t \cdot y \right) \circ (u,z) \\ &= \left( stu, f_{st,u} \cdot \left( f_{s,t} \cdot x \phi_t \cdot y \right) \phi_u \cdot z \right) \\ &= \left( stu, f_{st,u} \cdot f_{s,t} \phi_u \cdot x \phi_t \phi_u \cdot y \phi_u \cdot z \right) \\ &= \left( stu, f_{s,tu} \cdot f_{t,u} \cdot x \phi_t \phi_u \cdot y \phi_u \cdot z \right) \\ &= \left( s, x \right) \circ \left( tu, f_{t,u} \cdot y \phi_u \cdot z \right) \\ &= \left( s, x \right) \circ \left[ (t,y) \circ (u,z) \right], \end{aligned}$$

于是FC为半群。

若  $s,s \in Y$  ,则  $(s,s) \circ (s,s) = (s^2,f_{s,s} \cdot s\phi_s \cdot s) = (s,s)$  。反之,若 (s,x) 为幂等元,则  $(s^2,f_{s,s} \cdot x\phi_s \cdot x) = (s,x)^2 = (s,x)$  ,于是  $s^2 = s$  , $f_{s,s} \cdot x\phi_s \cdot x = x$  。由前一等式,可知  $f_{s,s} = s$  , $f_{s,s} = s$  ,再结合后一等式, $f_{s,s} = s$  ,从而  $f_{s,s} = s$  。故  $f_{$ 

$$(s,x) \circ (s^{-1}, x^{-1}\phi_{s^{-1}}) \circ (s,x) = (s,x) \circ (s^{-1}s, f_{s^{-1},s} \cdot x^{-1}\phi_{s^{-1}}\phi_{s} \cdot x)$$

$$= (ss^{-1}s, f_{s,s^{-1}s} \cdot x\phi_{s^{-1}s} \cdot f_{s^{-1},s} \cdot x^{-1}\phi_{s^{-1}}\phi_{s} \cdot x)$$

$$= (s, s^{-1}s \cdot x\phi_{s^{-1}s} \cdot x^{-1}\phi_{s^{-1}s} \cdot f_{s^{-1},s} \cdot x)$$

$$= (s, s^{-1}s \cdot (xx^{-1})\phi_{s^{-1}s} \cdot s^{-1}s \cdot x)$$

$$= (s, s^{-1}s \cdot xx^{-1} \cdot s^{-1}s \cdot s^{-1}s \cdot x)$$

$$= (s, x),$$

为方便记,以下总假设 S 是以 E 为幂等元半格的逆半群,  $\mu$  为 S 上的最大幂等元分离同余。记  $D = \left\{x \in S: (x\mu)^2 = x\mu\right\}$ 。

**引理 3.2**: (1)  $D \notin S$  的以 E 为幂等元集的 Clifford 子半群。

- (2) 对于任意的  $e \in E$  ,  $D_e = \{s \in S : s \mu e\}$  是以 e 为单位元的 S 的子群。
- (3)  $D = \bigcup_{e \in E} D_e$  是 D 的半格分解。

**证明**: 由 Lellament 引理,知正则半群上的所有同态都是幂等元提升的,于是 D 为  $\mu$  的核,即  $D = \{s \in S : (s,e) \in \mu, e \in E\}$ ,而 E 为半格,从而 D 是以 E 为幂等元集的 S 的子半群。

令  $s \in D$  , 则存在  $e \in E$  , 使得  $(s,e) \in \mu$  , 于是  $(s^{-1},e) \in \mu$  , 即  $s^{-1} \in D$  , 从而 D 为正则半群。

因此 D 为逆半群。而 $(u^{-1}u,e),(uu^{-1}) \in \mu$ ,则  $u^{-1}u=e=uu^{-1}$ ,进而 D 为群并(union of groups)。 但可以表示一些子群并的逆半群是 Clifford 半群,故 D 为 Clifford 半群。

对于 $u,v \in D_e$ ,由于 $(u,e),(v,e) \in \mu$ ,有 $(uv,e) \in \mu$ ,于是 $uv \in D_e$ ;类似地, $(uv)^{-1} \in D_e$ 。由上一段的证明,知 $(uv)^{-1}uv = e = uv(uv)^{-1}$ ,从而 $D_e$ 是以e为单位元的子群。

注意到,若 $w \in D_f (f \in E)$ ,则 $uw\mu ef$ ,于是 $D_e D_f \subseteq D_{ef}$ 。故 $D = \bigcup_{e \in E} D_e$ 是 Clifford 半群D 的半格分解。

记U为S关于同余 $\mu$ 分类的代表元集。由于 $\mu$ 为幂等元分离同余,所以幂等元所在 $\mu$ -类仅含一个元素,故 $E\subseteq U$ 。在U上,定义如下运算:

$$a * b = \mu_{ab} \cap U$$

其中  $\mu_a$  表示 S 的包含 a 的  $\mu$  -类。易知,(U,\*) 为半群,且同构于  $S/\mu$  ,于是 U 是以 E 为幂等元集的基本逆半群。

**引理 3.3:** 对于任意的  $s \in S$ ,存在惟一 $(u_s, d_s) \in U \times D$  使得  $u_s$ ,  $\mu s$ ,  $d_s L u_s \perp L s = u_s d_s$ .

证明: 据U的定义,有 $u_s \in D$ 使得 $s\mu u_s$ 。显然,

$$(ss^{-1}, u_su_s^{-1}), (u_s^{-1}s, s^{-1}s), (u_s^{-1}u_s, s^{-1}s) \in \mu$$

据  $\mu$  为幂等元分离同余,  $ss^{-1}=u_su_s^{-1}$ 且  $u_s^{-1}u_s=s^{-1}s$  ,于是  $d_s\coloneqq s^{-1}u_s\in D_{u_s^{-1}u_s}=D_{s^{-1}s}$  。进而  $s=ss^{-1}s=u_s\cdot u_s^{-1}s=u_s\cdot d_s$ 

现假设 $(v,b) \in U \times D$ 满足 $(u_s,d_s)$ 的条件。因为 $vb = u_sd_s$ ,所以 $v\mu = (vb)\mu = (u_sd_s)\mu = u_s\mu$ ,而U是代表元集,于是 $v = u_s$ 。注意到, $b^{-1}b = v^{-1}v$ 。从而 $b = b^{-1}b \cdot b = v^{-1}v \cdot b = u_s^{-1}u_sd_s = d_s$ 。这样, $(u_s,d_s)$ 的惟一性获证。

对于  $s,t \in U$  ,由引理 3.3,知  $st = s*t \cdot d_{st}, \ d_{st} \in D_{(s*t)^{-1}(s*t)}$  。由于  $(st,s*t) \in \mu$  ,我们知,  $((st^{-1})st,(s*t)^{-1}(s*t)) \in \mu$  ,但  $\mu$  为幂等元分离同余,于是  $(st^{-1})st = (s*t)^{-1}(s*t)$  。规定

$$G: U \times U \rightarrow D; (s,t) \mapsto g_{s,t} = d_{st}$$

另一方面,对于  $x \in D_e$  ,我们有  $(xs)\mu = (es)\mu = (e*s)\mu$  , $e = x^{-1}x$  ,再据引理 3.3,有  $xs = (e*s) \cdot d_{xs}$  , $d_{xs} \in D_{(e*s)^{-1}(e*s)}$  。 定义

$$\psi_s: D \to D; \ x \mapsto x \psi_s = d_{es}^{-1} d_{xs}$$

显然, $d_{es}^{-1}d_{xs} \in D_{(e*s)^{-1}(e*s)}$ 。 而  $\mu \subseteq H$ , 我们有

$$(e*s)^{-1}(e*s) = (es)^{-1}(es) = s^{-1}es$$

这意味着, $x\psi_s \in D_{s^{-1}es} = D_{s^{-1}x^{-1}xs} = D_{(xs)^{-1}xs}$ 。

**引理 3.4:**  $\psi_{s}$  是 D 的自同态。

证明: 注意到, $es\mu e*s$ 。我们有 esHe\*s,但  $e*sLd_{es}$ ,于是  $es\cdot d_{es}^{-1}=(e*s)d_{es}d_{es}^{-1}=(e*s)d_{es}^{-1}d_{es}=e*s$ 。 令  $x\in D_e$ , $y\in D_f$  。 据 U 的定义,知 e\*f=ef ,进而

$$efs \cdot d_{ef \cdot s}^{-1} d_{xy \cdot s} = ((ef) * s) \cdot d_{xy \cdot s} = xys = x \cdot (f * s) \cdot d_{ys} = x \cdot fs \cdot d_{fs}^{-1} d_{ys}$$

$$= f \cdot xs \cdot d_{fs}^{-1} d_{ys} = fe \cdot (e * s) \cdot d_{xs} \cdot d_{fs}^{-1} d_{ys}$$

$$= fes \cdot d_{xs}^{-1} \cdot d_{fs}^{-1} d_{ys} = efs \cdot d_{es}^{-1} d_{xs} d_{fs}^{-1} d_{ys}.$$
(1)

而

$$(es)^{-1}(es)(fs)^{-1}(fs) = s^{-1}eess^{-1}ffs^{-1} = s^{-1}efs = s^{-1}fe \cdot efs = (efs)^{-1}(efs)$$

且  $d_{ef\cdot s}^{-1}d_{xy\cdot s}\in D_{(efs)^{-1}(efs)},\ d_{es}^{-1}d_{xs}d_{fs}^{-1}d_{ys}\in D_{(es)^{-1}(es)(fs)^{-1}(fs)}$ ,利用等式(1),我们有

$$d_{ef \cdot s}^{-1} d_{xy \cdot s} = (efs)^{-1} efs \cdot d_{ef \cdot s}^{-1} d_{xy \cdot s}$$

$$= (efs)^{-1} (efs) \cdot d_{es}^{-1} d_{xs} d_{fs}^{-1} d_{ys}$$

$$= d_{es}^{-1} d_{xs} d_{fs}^{-1} d_{ys},$$

即 $(xy)\psi_s = x\psi_s \cdot y\psi_s$ 。从而 $\psi_s$ 为半群同态。

定义映射 $\psi: U \to \text{End}(D); \quad s \mapsto \psi_s$ 

**引理 3.5**: 五元组( $E;U,D;\psi,G$ )是 FC-系统。

**证明**: 仅需证明, $(E;U,D;\psi,G)$ 满足条件 $(I1)\sim(I5)$ 。令 $s,t,u\in U,x\in D$ 。记 $e=(s*t)^{-1}(s*t)$ 。据引理 3.4 的证明, $e*u=d_{eu}^{-1}$ ,进而

$$(s*(t*u))d_{s(t*u)}d_{tu} = s(t*u)d_{tu} = stu = (st)u$$

$$= (s*t) \cdot d_{st} \cdot u = (s*t) \cdot (e*u) \cdot d_{d_{tu}}$$

$$= (s*t) \cdot eu \cdot d_{eu}^{-1} \cdot d_{d_{tu}}$$

$$= (s*t)u \cdot d_{eu}^{-1} \cdot d_{d_{tu}}$$

$$= ((s*t)*u) \cdot d_{(s*t)u} \cdot d_{eu}^{-1} \cdot d_{d_{tu}}$$

但  $d_{s(t*u)}d_{(u)}$ ,  $d_{(s*t)u}\cdot d_{eu}^{-1}\cdot d_{d_{u}}\in D_{(s*(t*u))^{-1}(s*(t*u))}$ , 再利用引理 3.3,有  $d_{s(t*u)}d_{tu}=d_{(s*t)u}\cdot d_{eu}^{-1}\cdot d_{d_{u}}$ ,即  $g_{s*t,u}\cdot (g_{t,u}\psi_u)=g_{s,t*u}\cdot g_{t,u}$ 。 这意味着,(I1)满足。

现设 $x \in D_f$ , 记 $h = (x\psi_s)^{-1}(x\psi_s) = (fs)^{-1}fs$ , 则

$$fst \cdot (x\psi_{s*t}) g_{s,t} = fst \cdot d_{f(s*t)}^{-1} d_{x(s*t)}$$

$$= f \cdot (s*t) \cdot d_{x\cdot(s*t)} \cdot d_{st}$$

$$= x \cdot (s*t) \cdot d_{st} = xst$$

$$= (f*t) \cdot d_{xs} \cdot t = fs \cdot d_{fs}^{-1} d_{xs} \cdot t = fs \cdot (x\psi_s) \cdot t$$

$$= fs \cdot (h*t) \cdot sd_{(x\psi_s) \cdot t}$$

$$= fs \cdot ht \cdot d_{ht}^{-1} d_{(x\psi_s) \cdot t} = fsh \cdot t \cdot (x\psi_s \cdot \psi_t)$$

$$= fst \cdot (x\psi_s \psi_t).$$
(2)

但

$$(x\psi_{s*t})g_{s,t} \in D_{(st)^{-1}fst}D_{(st)^{-1}st} \subseteq D_{(st)^{-1}fst\cdot(st)^{-1}st} = D_{(fst)^{-1}(fst)}$$

且  $x\psi_s\psi_t \in D_{t^{-1}ht} = D_{t^{-1}s^{-1}fst} = D_{(fst)^{-1}(fst)}$ ,于是

$$(x\psi_{s*t})g_{s,t} = (fst)^{-1}(fst)\cdot(x\psi_{s*t})g_{s,t} = (fst)^{-1}(fst)\cdot(x\psi_{s}\psi_{t}) = x\psi_{s}\psi_{t}$$

即(I2)成立。

对于  $p,q \in E$  , 由定义, 有  $p*q = pq \in E(U)$  , 显然 pq = (pq)(pq) = (p\*q)pq , 再据引理 3.3, 我

们有  $d_{pq} = pq$ ,从而  $g_{p,q} = pq$ 。 我们证明了(I3)。

注意到, f\*p=fp 。 因为 D 为 Clifford 半群,所以 xp=fxpp=fpxp=(f\*p)xp ,且 fpLxp ,从而由引理 3.3,知  $d_{xp}=xp$  。而由(I3),有  $d_{fp}=fp$  ,进而  $d_{fp}^{-1}=fp$  。故  $x\psi_p=fpxp=xp$  ,这样条件(I4)得证。

最后,由  $s=ss^{-1}s=s\cdot s^{-1}s$ ,  $s^{-1}s=s^{-1}s\cdot s^{-1}s$  ,利用引理 3.3,有  $d_{ss^{-1}\cdot s}=s^{-1}s=d_{s^{-1}\cdot s}$ ,即  $g_{ss^{-1},s}=s^{-1}s=g_{s^{-1},s}$  。从而完成证明。

定义

$$\theta: S \to FC(E; U, D; \psi, G); s \mapsto s\theta = (u_s, d_s)$$

由引理 3.3,  $\theta$ 是单射。为证明定理 2.2, 仅需证明: $\theta$ 是半群同构。

**引理 3.6:**  $\theta$ 是半群同构。

**证明**:  $\diamondsuit s, t \in S$ ,由引理 3.3, $u_s^{-1}u_s = d_s^{-1}d_s$ , $u_t^{-1}u_t = d_t^{-1}d_t$ ,进而

$$\begin{split} g_{u_s,u_t} \cdot & \Big( d_s \psi_{u_t} \Big) \cdot d_t \in D_{(u_s u_t)^{-1}(u_s u_t)} D_{(d_s u_t)^{-1}(d_s u_t)} D_{d_t^{-1} d_t} \\ & \subseteq D_{(u_s u_t)^{-1}(u_s u_t)(d_s u_t)^{-1}(d_s u_t)} D_{d_t^{-1} d_t} \\ & = D_{u_t^{-1} \cdot u_s^{-1} u_s \cdot u_t u_t^{-1} \cdot d_s^{-1} d_s u_t \cdot d_t^{-1} d_t} \\ & = D_{u_t^{-1} \cdot u_s^{-1} u_s \cdot u_t u_t^{-1} \cdot u_s^{-1} u_s u_t \cdot u_t^{-1} u_t} \\ & = D_{u_t^{-1} \cdot u_t u^{-1} u_t \cdot u_s^{-1} u_s \cdot u_s^{-1} u_s \cdot u_t u_t^{-1} u_t} \\ & = D_{u^{-1} u_s^{-1} u_s u_t} \\ & = D_{u^{-1} u_s^{-1} u_s u_t} \\ & = D_{(u_s u_t)^{-1} (u_s u_t)} \\ & = D_{(u_s u_t)^{-1} (u_s u_t)}, \end{split}$$

再结合

$$st = u_{s}d_{s} \cdot u_{t}d_{t} = u_{s} \cdot \left( \left( d_{s}^{-1}d_{s} \right) * u_{t} \right) \cdot d_{d_{s}u_{t}} \cdot d_{t}$$

$$= u_{s} \cdot d_{s}^{-1}d_{s}u_{t} \cdot d_{\left( d_{s}^{-1}d_{s} \right)u_{t}}^{-1}d_{d_{s}u_{t}} \cdot d_{t}$$

$$= u_{s}u_{t} \cdot \left( d_{s}\psi_{u_{t}} \right) \cdot d_{t}$$

$$= \left( u_{s} * u_{t} \right) \cdot g_{u_{s},u_{t}} \left( d_{s}\psi_{u_{t}} \right) \cdot d_{t},$$

利用引理 3.3,有  $u_{st}=u_s*u_t,~d_{st}=g_{u_s,u_t}\left(d_s\psi_{u_t}\right)\cdot d_t$ ,于是

$$(st)\theta = (u_{st}, d_{st}) = (u_s * u_t, g_{u_s, u_t}(d_s \psi_{u_t}) \cdot d_t) = (u_s, d_s)(u_t, d_t) = (s\theta)(t\theta)$$

从而 $\theta$ 是半群同态。

对于 $(a,x) \in FC(E;U,D;\psi,G)$ ,则 aLx 。由引理 3.3,有  $d_{ax} = x$ , $u_{ax} = a$ ,进而 $(ax)\theta = (a,x)$ ,于是 $\theta$ 为满射。从而 $\theta$ 为半群同态。

## 基金项目

国家自然科学基金(11361027),江西省自然科学基金和江西省教育厅科研基金资助项目。

## 参考文献 (References)

[1] Guo, X.J., Ren, C.C. and Shum, K.P. (2007) Dual wreath product structure of right C-rpp semigroups. *Algebra Colloquium*, **14**, 285-294.

- [2] Guo, X.J., Zhao, M. and Shum, K.P. (2008) Wreath product structure of left C-rpp semigroups. *Algebra Colloquium*, **15**, 101-108.
- [3] Howie, J.M. (1976) An introduction to semigroup theory. Academic Press, London.
- [4] Lawson, M.V. (1998) Inverse semigroups. World Scientific, Singapore, New Jersey, Hong Kong.
- [5] Petrich, M. (1984) Inverse semigroups. John Wiley & Sons, Inc., New York.