AAM  >> Vol. 5 No. 2 (May 2016)

    非线性无力场的Low-Lou解法探讨
    On the Low-Lou Approach for the Nonlinear Force-Free Magnetic Field

  • 全文下载: PDF(580KB) HTML   XML   PP.166-171   DOI: 10.12677/AAM.2016.52022  
  • 下载量: 586  浏览量: 1,812  

作者:  

秦剑,李毅伟:太原科技大学应用科学学院,山西 太原

关键词:
非线性微分方程打靶法无力场Nonlinear Differential Equations Shooting Method Force-Free Field

摘要:
非线性无力场是天体物理中的重要数学模型,它是一套非线性偏微分方程组,经常用于太阳及恒星磁场的理论研究。在轴对称情形下,该方程组归化为满足特定边界条件的带有未知参数的二阶非线性常微分方程,此即所谓的Low-Lou解法。本文提出一种参数打靶法,作为对Low-Lou解法的探讨和补遗,并给出更多可选的数值无力场。

Nonlinear force-free magnetic field is an important mathematical model in astrophysics, which is a set of nonlinear partial differential equations, often used in the theoretical studies of solar and stellar magnetic fields. In the axisymmetric case, this set of partial differential equations is reduced into a nonlinear ordinary differential equation of second order with an unknown parameter, satisfying certain boundary condition. This is the so-called Low-Lou approach of the problem. In this paper, we propose a parametric shooting method as a technical supplement for the Low- Lou approach, offering more optional numerical force-free magnetic fields.

文章引用:
秦剑, 李毅伟. 非线性无力场的Low-Lou解法探讨[J]. 应用数学进展, 2016, 5(2): 166-171. http://dx.doi.org/10.12677/AAM.2016.52022

参考文献

[1] Régnier, S. (2013) Magnetic Field Extrapolations into the Corona: Success and Future Improvements. Solar Physics, 288, 481-505.
http://dx.doi.org/10.1007/s11207-013-0367-8
[2] Low, B.C. and Lou, Y.Q. (1990) Modeling Solar Force-Free Magnetic Fields. Astrophysical Journal, 352, 343-352.
http://dx.doi.org/10.1086/168541
[3] Wiegelmann, T. and Sakurai, T. (2012) Solar Force-Free Magnetic Fields. Living Reviews in Solar Physics, 9, 1-49.
http://dx.doi.org/10.12942/lrsp-2012-5
[4] Flyer, N., Fornberg, B., Thomas, S. and Low, B.C. (2004) Magnetic Field Confinement in the Solar Corona. I. Force- Free Magnetic Fields. The Astrophysical Journal, 606, 1210-1222.
http://dx.doi.org/10.1086/383025
[5] Zhang, M., Flyer, N. and Low, B.C. (2012) Magnetic Helicity of Self-Similar Axisymmetric Force-Free Fields. The Astrophysical Journal, 755, 78-87.
http://dx.doi.org/10.1088/0004-637X/755/1/78
[6] Lerche, I. and Low, B.C. (2014) A Nonlinear Eigenvalue Problem for Self-Similar Spherical Force-Free Magnetic Fields. Physics of Plasmas, 21, Article ID: 102902.
http://dx.doi.org/10.1063/1.4897366
[7] Prasad, A., Mangalam, A. and Ravindra, B. (2014) Separable Solutions of Force-Free Spheres and Applications to Solar Active Regions. The Astrophysical Journal, 786, 81-104.
http://dx.doi.org/10.1088/0004-637X/786/2/81
[8] 杨旦旦, 岳宝增, 祝乐梅, 宋晓娟. 用打靶法求解微重力下矩形和旋转对称贮箱内静液面形状[J]. 空间科学学报, 2012, 32(1): 85-91.
[9] Wheatland, M.S., Sturrock, P.A. and Roumeliotis, G. (2000) An Optimization Approach to Reconstructing Force-Free Fields. The Astrophysical Journal, 540, 1150-1155.
http://dx.doi.org/10.1086/309355
[10] Li, Y., Song, G. and Li, J. (2009) A Test on Two Codes for Extrapolating Solar Linear Force-Free Magnetic Fields. Solar Physics, 260, 109-124.
http://dx.doi.org/10.1007/s11207-009-9431-9
[11] Schrijver, C.J., DeRosa, M.L., Metcalf, T.R., et al. (2006) Nonlinear Force-Free Modeling of Coronal Magnetic Fields Part I: A Quantitative Comparison of Methods. Solar Physics, 235, 161-190.
http://dx.doi.org/10.1007/s11207-006-0068-7