[1]
|
Celik, I.H., Hanna, M., Canpolat, F.E. and Pammi, M. (2021) Diagnosis of Neonatal Sepsis: The Past, Present and Future. Pediatric Research, 91, 337-350. https://doi.org/10.1038/s41390-021-01696-z
|
[2]
|
Kim, F., Polin, R.A. and Hooven, T.A. (2020) Neonatal Sepsis. BMJ, 371, m3672. https://doi.org/10.1136/bmj.m3672
|
[3]
|
Fleischmann-Struzek, C., Goldfarb, D.M., Schlattmann, P., Schlapbach, L.J., Reinhart, K. and Kissoon, N. (2018) The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. The Lancet Respiratory Medicine, 6, 223-230. https://doi.org/10.1016/s2213-2600(18)30063-8
|
[4]
|
De Rose, D.U., Ronchetti, M.P., Martini, L., Rechichi, J., Iannetta, M., Dotta, A., et al. (2024) Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Tropical Medicine and Infectious Disease, 9, Article 199. https://doi.org/10.3390/tropicalmed9090199
|
[5]
|
Puopolo, K.M., Benitz, W.E., Zaoutis, T.E., Cummings, J., Juul, S., Hand, I., et al. (2018) Management of Neonates Born at ≥ 35 0/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics, 142, e20182894. https://doi.org/10.1542/peds.2018-2894
|
[6]
|
Puopolo, K.M., Benitz, W.E., Zaoutis, T.E., Cummings, J., Juul, S., Hand, I., et al. (2018) Management of Neonates Born at ≤ 34 6/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics, 142, e20182896. https://doi.org/10.1542/peds.2018-2896
|
[7]
|
Chen, Q., Wu, Z. and Xie, L. (2022) Progranulin Is Essential for Bone Homeostasis and Immunology. Annals of the New York Academy of Sciences, 1518, 58-68. https://doi.org/10.1111/nyas.14905
|
[8]
|
He, Z., Ong, C.H.P., Halper, J. and Bateman, A. (2003) Progranulin Is a Mediator of the Wound Response. Nature Medicine, 9, 225-229. https://doi.org/10.1038/nm816
|
[9]
|
De Muynck, L. and Van Damme, P. (2011) Cellular Effects of Progranulin in Health and Disease. Journal of Molecular Neuroscience, 45, 549-560. https://doi.org/10.1007/s12031-011-9553-z
|
[10]
|
魏凡华, 张玉颖, 于修平. 生长因子Progranulin的结合受体和生物学功能[J]. 中国生物化学与分子生物学报, 2014, 30(7): 655-659.
|
[11]
|
Rao, L., Song, Z., Yu, X., Tu, Q., He, Y., Luo, Y., et al. (2020) Progranulin as a Novel Biomarker in Diagnosis of Early-Onset Neonatal Sepsis. Cytokine, 128, Article ID: 155000. https://doi.org/10.1016/j.cyto.2020.155000
|
[12]
|
Yang, K., He, Y., Xiao, S., Ai, Q. and Yu, J. (2020) Identification of Progranulin as a Novel Diagnostic Biomarker for Early-Onset Sepsis in Neonates. European Journal of Clinical Microbiology & Infectious Diseases, 39, 2405-2414. https://doi.org/10.1007/s10096-020-03981-x
|
[13]
|
Chang, W., Peng, F., Meng, S., Xu, J. and Yang, Y. (2020) Diagnostic Value of Serum Soluble Triggering Expressed Receptor on Myeloid Cells 1 (sTREM-1) in Suspected Sepsis: A Meta-Analysis. BMC Immunology, 21, Article No. 2. https://doi.org/10.1186/s12865-020-0332-x
|
[14]
|
Qin, Q., Liang, L. and Xia, Y. (2021) Diagnostic and Prognostic Predictive Values of Circulating sTREM-1 in Sepsis: A Meta-analysis. Infection, Genetics and Evolution, 96, Article ID: 105074. https://doi.org/10.1016/j.meegid.2021.105074
|
[15]
|
Siskind, S., Brenner, M. and Wang, P. (2022) TREM-1 Modulation Strategies for Sepsis. Frontiers in Immunology, 13, Article 907387. https://doi.org/10.3389/fimmu.2022.907387
|
[16]
|
Patoulias, D., Kalogirou, M.S. and Patoulias, I. (2018) Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) and Its Soluble in the Plasma Form (sTREM-1) as a Diagnostic Biomarker in Neonatal Sepsis. Folia Medica Cracoviensia, 58, 15-19.
|
[17]
|
Bellos, I., Fitrou, G., Daskalakis, G., Thomakos, N., Papantoniou, N. and Pergialiotis, V. (2018) Soluble TREM-1 as a Predictive Factor of Neonatal Sepsis: A Meta-Analysis. Inflammation Research, 67, 571-578. https://doi.org/10.1007/s00011-018-1149-4
|
[18]
|
Cayir Koc, T.N., Kahvecioglu, D., Cetinkaya, A.K., Oktem, A., Tas, M., Dogan, H., et al. (2024) Soluble TREM-1 Is Not a Useful Biomarker in the Diagnosis of Early-Onset Neonatal Sepsis. Future Microbiology, 19, 1489-1496. https://doi.org/10.1080/17460913.2024.2406654
|
[19]
|
Zou, Q., Wen, W. and Zhang, X. (2014) Presepsin as a Novel Sepsis Biomarker. World Journal of Emergency Medicine, 5, 16-19. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.002
|
[20]
|
宁永忠, 王雪茹, 程田, 等.血清Presepsin临床检测的研究进展[J]. 中华检验医学杂志, 2019, 42(8): 700-704.
|
[21]
|
Poggi, C., Lucenteforte, E., Petri, D., De Masi, S. and Dani, C. (2022) Presepsin for the Diagnosis of Neonatal Early-Onset Sepsis: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 176, 750-758. https://doi.org/10.1001/jamapediatrics.2022.1647
|
[22]
|
Pietrasanta, C., Ronchi, A., Vener, C., Poggi, C., Ballerini, C., Testa, L., et al. (2021) Presepsin (Soluble CD14 Subtype) as an Early Marker of Neonatal Sepsis and Septic Shock: A Prospective Diagnostic Trial. Antibiotics, 10, Article 580. https://doi.org/10.3390/antibiotics10050580
|
[23]
|
Kingsley, S.M.K. and Bhat, B.V. (2017) Role of Micrornas in Sepsis. Inflammation Research, 66, 553-569. https://doi.org/10.1007/s00011-017-1031-9
|
[24]
|
Fouda, E., Elrazek Midan, D.A., Ellaban, R., El-kousy, S. and Arafat, E. (2021) The Diagnostic and Prognostic Role of miRNA 15b and miRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988. https://doi.org/10.1016/j.bbrep.2021.100988
|
[25]
|
Ernst, L.M., Mithal, L.B., Mestan, K., Wang, V., Mangold, K.A., Freedman, A., et al. (2021) Umbilical Cord miRNAs to Predict Neonatal Early Onset Sepsis. PLOS ONE, 16, e0249548. https://doi.org/10.1371/journal.pone.0249548
|
[26]
|
Zhao, Y., Zhu, R. and Hu, X. (2024) Diagnostic Capacity of miRNAs in Neonatal Sepsis: A Systematic Review and Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 37, Article ID: 2345850. https://doi.org/10.1080/14767058.2024.2345850
|
[27]
|
Wojno, E.D.T. and Hunter, C.A. (2012) New Directions in the Basic and Translational Biology of Interleukin-27. Trends in Immunology, 33, 91-97. https://doi.org/10.1016/j.it.2011.11.003
|
[28]
|
Mirlekar, B. and Pylayeva-Gupta, Y. (2021) IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers, 13, Article 167. https://doi.org/10.3390/cancers13020167
|
[29]
|
Chen, Z., Wang, S., Erekosima, N., Li, Y., Hong, J., Qi, X., et al. (2013) IL-4 Confers Resistance to Il-27-Mediated Suppression on CD4+ T Cells by Impairing Signal Transducer and Activator of Transcription 1 Signaling. Journal of Allergy and Clinical Immunology, 132, 912-921.e5. https://doi.org/10.1016/j.jaci.2013.06.035
|
[30]
|
El-behi, M., Ciric, B., Yu, S., Zhang, G., Fitzgerald, D.C. and Rostami, A. (2009) Differential Effect of IL-27 on Developing versus Committed Th17 Cells. The Journal of Immunology, 183, 4957-4967. https://doi.org/10.4049/jimmunol.0900735
|
[31]
|
Neufert, C., Becker, C., Wirtz, S., Fantini, M.C., Weigmann, B., Galle, P.R., et al. (2007) IL‐27 Controls the Development of Inducible Regulatory T Cells and Th17 Cells via Differential Effects on Stat1. European Journal of Immunology, 37, 1809-1816. https://doi.org/10.1002/eji.200636896
|
[32]
|
Wang, Q. and Liu, J. (2016) Regulation and Immune Function of Il-27. Advances in Experimental Medicine and Biology, 941, 191-211. https://doi.org/10.1007/978-94-024-0921-5_9
|
[33]
|
Fahmy, E.M., Kamel, N.M., Abdelsadik, A., et al. (2020) Assessment of Interleukin-27 and Chemokine RANTES as Biomarkers for Early Onset Neonatal Sepsis. Egyptian Journal of Immunology, 27, 9-18.
|
[34]
|
He, Y., Du, W.x., Jiang, H.y., Ai, Q., Feng, J., Liu, Z., et al. (2017) Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker for Neonatal Early Onset Sepsis. Shock, 47, 140-147. https://doi.org/10.1097/shk.0000000000000753
|