辅助早期诊断新生儿早发型败血症的生物标志物研究新进展
Advances in Biomarkers for Early Diagnosis of Early-Onset Neonatal Sepsis
DOI: 10.12677/acm.2025.153740, PDF, HTML, XML,   
作者: 熊 妤, 李禄全*:重庆医科大学附属儿童医院新生儿诊治中心,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆
关键词: 新生儿早发型败血症生物标志物颗粒素蛋白前体白细胞介素-27Early Onset Neonatal Sepsis Biomarker PGRN Interleukin-27
摘要: 新生儿早发型败血症依然是导致新生儿死亡和发病的主要因素。血培养被视为诊断的金标准,但其结果耗时长且阳性率不高,非特异性炎症标志物如C反应蛋白、降钙素原、白介素6等被应用于临床,随着检测技术的进步,越来越多的新生物标志物如PGRN、sTREM-1、sCD14-ST、miRNA以及白细胞介素-27等逐渐被发现。本综述总结了近年来研究中发现的可能用于早期诊断新生儿早发型败血症的新生物标志物。
Abstract: Neonatal early-onset sepsis remains a major cause of neonatal mortality and morbidity. Blood culture is considered the gold standard for diagnosis, but it is time-consuming and has a low positivity rate. Non-specific inflammatory markers such as C-reactive protein, procalcitonin, and interleukin-6 have been applied in clinical practice. With advancements in detection technology, an increasing number of new biomarkers, including PGRN, sTREM-1, sCD14-ST, miRNA, and interleukin-27, have been gradually identified. This review summarizes the novel biomarkers discovered in recent research that may be used for the early diagnosis of neonatal early-onset sepsis.
文章引用:熊妤, 李禄全. 辅助早期诊断新生儿早发型败血症的生物标志物研究新进展[J]. 临床医学进展, 2025, 15(3): 1289-1294. https://doi.org/10.12677/acm.2025.153740

1. 引言

新生儿败血症是病原体侵入新生儿血液中并且生长、繁殖、产生毒素而造成的全身性炎症反应,是新生儿时期一种严重的感染性疾病,其发病率及死亡率均较高[1] [2]。新生儿败血症是威胁新生儿生命的重大疾病,人群中发病率为2202/10万存活新生儿,病死率11%~19% [3]。新生儿败血症可分为早发性败血症(Early‑Onset Sepsis, EOS),其临床表现发生在出生后72 h内,以及晚发性败血症(Late‑Onset Sepsis, LOS),其症状表现在出生后72 h至28天内[4]。总体而言,EOS的发病率和死亡率均高于LOS。因此,早期诊断EOS并采取积极治疗措施有助于降低死亡率,改善预后。败血症诊断金标准为血培养阳性,但存在结果等待时间长、敏感性低以及多种菌种不能生长出来等问题,且在新生儿人群尤其是极低或超低出生体重儿中,由于血容量少,允许采集血量有限制(约1毫升),导致新生儿人群血培养敏感性更低[5] [6],因此探索采用非特异性炎症标志物辅助早期诊断EOS一直是国内外相关研究的焦点,如C反应蛋白、降钙素原、白介素6等已经广泛应用于临床,并具有较大的参考价值。本文综述了近年来新发现的非特异性炎症标志物在EOS早期诊断中的相关研究成果。

2. 颗粒素蛋白前体(Progranulin, PGRN)

PGRN是从条件性组织培养物中分离、纯化的一种分泌性生长因子[7],具有抗炎性,也是调节伤口修复病理过程的重要因子,能够促进淋巴细胞浸润以及粒细胞、巨噬细胞、血管内皮细胞和成纤维细胞在损伤部位的积累[8],其发挥生物学功能可能与刺激产生抗炎性的辅助型T细胞2 (T Helper 2 Cell, Th2)性细胞因子有关[9],例如白介素10。因此,PGRN在细胞因子介导的炎症反应中具有重要地位[10]

有研究[11] [12]将EOS患儿体内PGRN与其他常用的生物标志物如降钙素原(Procalcitonin, PCT)、C反应蛋白、白细胞介素家族(如白介素-33、白介素-17a、白介素-23、白介素-6)、肿瘤坏死因子α、干扰素γ、粒细胞–巨噬细胞集落刺激因子等进行了比较,结果提示EOS感染组血清PGRN水平明显高于未感染组,且提示PGRN是EOS的独立预测因子。PGRN的显著优势在于其在炎症反应中的多重调节作用,尤其是在促进抗炎性细胞因子(如白介素-10)的产生方面,这使其在早期诊断EOS中具有较高的特异性,可作为EOS早期诊断的有效生物标志物。此外,相较于单独使用,PGRN在联合应用白介素-33和PCT时,可提高EOS的预测能力[12],这表明PGRN在联合诊断中具有潜在的协同效应,未来研究可以进一步探索其与其他标志物的联合应用策略,以提高诊断的敏感性和特异性。

3. 可溶性髓样细胞触发受体1 (Soluble Triggering Receptor Expressed on Myeloid Cells-1, sTREM-1)

髓系细胞表达的触发受体-1是一个与炎症级联放大密切相关的免疫球蛋白超家族成员,主要表达于中性粒细胞、成熟的单核细胞、巨噬细胞表面。sTREM-1是髓系细胞表达的触发受体-1的可溶形式。目前成人脓毒症研究[13] [14]表明,sTREM-1在细菌、真菌感染时表达明显增高,其ROC曲线下面积(Area Under Curve, AUC)分为0.89和0.88,可作为一种诊断成人脓毒症的可靠指标[15]。sTREM-1不仅对成人脓毒症有一定的诊断价值,而且对新生儿脓毒症也有一定的诊断价值[16]。一项Meta分析[17]表明,sTREM-1可能是预测新生儿败血症的可用生物标志物,其对新生儿败血症预测敏感性为0.95 (95% CI: 0.81~0.99),特异性为0.87 (95% CI: 0.56~0.97),诊断比值比为132.49 (95% CI: 6.85~2560.70)。然而,Cayir Koc等[18]对52名疑似EOS患者和30名健康新生儿进行了sTREM-1和其他生物标志物的分析发现,两组之间的sTREM-1水平没有统计学意义差异,对其在新生儿败血症的独立诊断效用提出了质疑。由于sTREM-1在新生儿领域的研究数量较少,且多为单中心或小样本研究,缺乏大规模、多中心的前瞻性研究,这种局限性可能导致研究结果的偏差,此外,新生儿的免疫系统尚未完全发育,且早产儿和足月儿的免疫反应可能存在差异,这种异质性可能导致sTREM-1在不同新生儿群体中的表达水平不一致,进而影响其诊断效能,使其在新生儿败血症早期诊断及其可靠性方面还存在争议,限制了其在新生儿临床实践中的应用。未来还需要对sTREM-1进行更大规模的多中心研究,并探索其与其他标志物(如C反应蛋白、降钙素原、白介素6等)的联合应用,提高其诊断敏感性和特异性,以全面评估其在新生儿脓毒症诊断中的临床效用。

4. 可溶性CD14分子亚型(Soluble CD14 Molecular Subtype, sCD14-ST)

sCD14-ST是一个大小为13 kDa的糖蛋白片段,是一种新型的生物标志物,在脓毒症的早期,该标志物升高早于降钙素原。在感染后2小时内血液中sCD14-ST的浓度开始增加,在3小时达到峰值,并在长达4~5小时内保持升高[19] [20],对脓毒症早期诊断更有意义。Loannis Bellos等[21]的研究结果显示,sCD14-ST对新生儿脓毒症的敏感性为0.91 (95% CI: 0.87~0.93),特异性为0.91 (95% CI: 0.88~0.94),OR值170.28 (95% CI: 51.13~567.11),其AUC是0.9751,比C反应蛋白、降钙素原的AUC更大、更敏感,且该值的参考范围,足月儿的75%、95%百分位数分别是791和1178 pg/ml [20],对新生儿脓毒症具有临床价值。但Pietrasanta等[22]的研究结果显示,sCD14-ST是新生儿脓毒症的早期生物标志物,但不能支持血培养阳性新生儿的早期识别。

5. 微小RNA(microRNA, miRNA)

miRNA是一类由内源基因编码长度约为22个核苷酸的非编码单链RNA分子,它们可结合靶向特异性信使RNA并诱导其降解或抑制翻译,这对发育和生存至关重要。miRNA参与调节加剧的炎症反应、内皮功能损害和凝血级联反应的激活[23]。研究发现有几种miRNA的失调,如miRNA-15b、miRNA-378a、miRNA-211-5p、miRNA-142-3p在败血症的新生儿中存在差异表达。Fouda等[24]测量了25名脓毒症新生儿和25名健康对照者静脉血中miRNA-15b和miRNA-378a表达的相对定量,结果表明脓毒症患者的miRNA-15b水平显著高于健康志愿者,而miRNA-378a水平显著低于健康志愿者。ROC曲线显示血清miRNA-15b作为脓毒症的诊断指标,敏感性和特异性分别为0.76和0.88,截断值为3.24,而miRNA-378a 敏感性和特异性分别为0.60和0.88,截断值为0.361。而Ernst等[25]通过回顾性病例对照研究,从41名新生儿(其中8例EOS患儿,12例疑似败血症,21例无感染者作为对照)的脐带血浆样本中提取RNA进行分析发现,与健康对照组相比,EOS血浆中上调最多的miRNA是miRNA-211-5p (差异倍数为5.42,P = 0.000788),下调最多的miRNA是miRNA-142-3p (差异倍数为−2.7,P = 0.008193)。这些差异使得miRNA成为诊断新生儿脓毒症的可能生物标志物。

在一项系统的Meta分析[26]中,比较了miRNA与PCT在新生儿脓毒症的诊断能力,结果发现miRNA的特异性和诊断比值比高于PCT,但敏感性较低。miRNA的敏感性为0.87 (95% CI: 0.81~0.91),特异性为0.79 (95%CI: 0.71~0.85),诊断比值比为24 (95% CI: 12~50),AUC为0.9 (95% CI: 0.87~0.92);而PCT的敏感性为0.92 (95% CI: 0.83~0.96),特异性为0.64 (95% CI: 0.56~0.70),诊断比值比为20 (95% CI: 7~56),AUC为0.74 (95% CI: 0.70~0.78)。虽然miRNA的AUC值0.9比PTC的0.74高,然而它们之间的OA值(miRNA的OA值为77.36%,PCT的OA值为80.38%,P = 0.13)没有统计学上的显着差异。

6. 血浆白细胞介素-27 (Interleukin-27, IL-27)

IL-27是一种异二聚体细胞因子,属于细胞因子白介素-12家族,由IL-27-p28和EBI3 (Epstein-Barr-virus-Induced Gene 3, EBI3)亚基组成,它们由抗原呈递细胞在暴露于微生物产物和炎症刺激时产生[27]。IL-27可促进初始CD4+ T细胞的增殖和分化,且能与白介素-12协同作用于初始的CD4+ T细胞,诱导其产生干扰素γ [28]。在CD4+ T细胞分化的初始阶段,IL-27不仅能抑制其分化为Th2和Th17细胞,并且能抑制Th17细胞和诱导型调节性T细胞(Regulatory T Cells, Treg)的发育[29]-[31]。此外IL-27还能调节CD8+ T、Treg、B细胞、DC、巨噬细胞、NK细胞等多种免疫细胞的免疫功能[32]

El-Behi等[33]对比了47例EOS以及37例健康新生儿,测量其血清IL-27浓度和受激活调节正常T细胞表达和分泌因子(Regulated upon Activation Normal T Cell Expressed and Secreted, RANTES)浓度。与对照组相比,EOS组IL-27浓度显著升高,而RANTES浓度显著降低。且EOS组或对照组的IL-27和RANTES水平之间均无显著相关性。IL-27的敏感性、特异性、阳性和阴性预测值分别为93.6%、81.1%、86.3%和90.9%,而RANTES的这些值分别为68.1%、78.4%、80%和65.9%。两种标志物的组合预测脓毒症的特异性为97.3%。

而He等[34]将IL-27单独使用及与其他生物标志物(PCT、C反应蛋白等)联合使用的预测价值进行了对比,在单个生物标志物预测EOS时,IL-27在区分感染新生儿和未感染新生儿方面表现良好,AUC为0.747,截断点为>1 ng/mL,敏感性为70.59%,特异性为71.08%;而PCT的AUC为0.723,敏感性为86.76%,特异性为57.83%;C反应蛋白的AUC为0.720,截断点为>3 ng/mL,敏感性为67.65%,特异性为66.27%。但在将IL-27、PCT和C反应蛋白进行2个和3个的组合时结果表明,向PCT中添加IL-27导致AUC值增加(从0.723到0.792,P = 0.02),C反应蛋白和PCT组合的AUC为0.784 (P = 0.02),C反应蛋白、PCT和IL-27的AUC值增加到0.834。这表明IL-27作为EOS独立预测因子的显著潜力,而且在与PCT、C反应蛋白等其他标志物联合使用时能够显著提升对EOS的预测效能,为临床诊断和治疗提供更加可靠的依据。

7. 结语

尽管PGRN、sTREM-1、sCD14-ST、miRNA以及IL-27等生物标志物在EOS的诊断中展现出了巨大的潜力,但目前关于这些标志物在新生儿早期败血症中的具体应用和诊断可靠性仍存在一些争议和不确定性。因此,在未来的研究中,应重点关注以下几个方面:首先,如何通过多中心、大样本的临床研究进一步验证这些标志物的诊断效能;其次,如何通过生物信息学和多组学技术(如转录组学、蛋白质组学)深入挖掘这些标志物的作用机制,以提高其诊断特异性和敏感性;最后,如何将多个标志物联合应用,构建多标志物诊断模型,以提高EOS的早期诊断准确性。这些研究方向将为新生儿败血症的早期诊断和治疗提供更加精准和有效的手段。

NOTES

*通讯作者。

参考文献

[1] Celik, I.H., Hanna, M., Canpolat, F.E. and Pammi, M. (2021) Diagnosis of Neonatal Sepsis: The Past, Present and Future. Pediatric Research, 91, 337-350.
https://doi.org/10.1038/s41390-021-01696-z
[2] Kim, F., Polin, R.A. and Hooven, T.A. (2020) Neonatal Sepsis. BMJ, 371, m3672.
https://doi.org/10.1136/bmj.m3672
[3] Fleischmann-Struzek, C., Goldfarb, D.M., Schlattmann, P., Schlapbach, L.J., Reinhart, K. and Kissoon, N. (2018) The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. The Lancet Respiratory Medicine, 6, 223-230.
https://doi.org/10.1016/s2213-2600(18)30063-8
[4] De Rose, D.U., Ronchetti, M.P., Martini, L., Rechichi, J., Iannetta, M., Dotta, A., et al. (2024) Diagnosis and Management of Neonatal Bacterial Sepsis: Current Challenges and Future Perspectives. Tropical Medicine and Infectious Disease, 9, Article 199.
https://doi.org/10.3390/tropicalmed9090199
[5] Puopolo, K.M., Benitz, W.E., Zaoutis, T.E., Cummings, J., Juul, S., Hand, I., et al. (2018) Management of Neonates Born at ≥ 35 0/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics, 142, e20182894.
https://doi.org/10.1542/peds.2018-2894
[6] Puopolo, K.M., Benitz, W.E., Zaoutis, T.E., Cummings, J., Juul, S., Hand, I., et al. (2018) Management of Neonates Born at ≤ 34 6/7 Weeks’ Gestation with Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics, 142, e20182896.
https://doi.org/10.1542/peds.2018-2896
[7] Chen, Q., Wu, Z. and Xie, L. (2022) Progranulin Is Essential for Bone Homeostasis and Immunology. Annals of the New York Academy of Sciences, 1518, 58-68.
https://doi.org/10.1111/nyas.14905
[8] He, Z., Ong, C.H.P., Halper, J. and Bateman, A. (2003) Progranulin Is a Mediator of the Wound Response. Nature Medicine, 9, 225-229.
https://doi.org/10.1038/nm816
[9] De Muynck, L. and Van Damme, P. (2011) Cellular Effects of Progranulin in Health and Disease. Journal of Molecular Neuroscience, 45, 549-560.
https://doi.org/10.1007/s12031-011-9553-z
[10] 魏凡华, 张玉颖, 于修平. 生长因子Progranulin的结合受体和生物学功能[J]. 中国生物化学与分子生物学报, 2014, 30(7): 655-659.
[11] Rao, L., Song, Z., Yu, X., Tu, Q., He, Y., Luo, Y., et al. (2020) Progranulin as a Novel Biomarker in Diagnosis of Early-Onset Neonatal Sepsis. Cytokine, 128, Article ID: 155000.
https://doi.org/10.1016/j.cyto.2020.155000
[12] Yang, K., He, Y., Xiao, S., Ai, Q. and Yu, J. (2020) Identification of Progranulin as a Novel Diagnostic Biomarker for Early-Onset Sepsis in Neonates. European Journal of Clinical Microbiology & Infectious Diseases, 39, 2405-2414.
https://doi.org/10.1007/s10096-020-03981-x
[13] Chang, W., Peng, F., Meng, S., Xu, J. and Yang, Y. (2020) Diagnostic Value of Serum Soluble Triggering Expressed Receptor on Myeloid Cells 1 (sTREM-1) in Suspected Sepsis: A Meta-Analysis. BMC Immunology, 21, Article No. 2.
https://doi.org/10.1186/s12865-020-0332-x
[14] Qin, Q., Liang, L. and Xia, Y. (2021) Diagnostic and Prognostic Predictive Values of Circulating sTREM-1 in Sepsis: A Meta-analysis. Infection, Genetics and Evolution, 96, Article ID: 105074.
https://doi.org/10.1016/j.meegid.2021.105074
[15] Siskind, S., Brenner, M. and Wang, P. (2022) TREM-1 Modulation Strategies for Sepsis. Frontiers in Immunology, 13, Article 907387.
https://doi.org/10.3389/fimmu.2022.907387
[16] Patoulias, D., Kalogirou, M.S. and Patoulias, I. (2018) Triggering Receptor Expressed on Myeloid Cells-1 (TREM-1) and Its Soluble in the Plasma Form (sTREM-1) as a Diagnostic Biomarker in Neonatal Sepsis. Folia Medica Cracoviensia, 58, 15-19.
[17] Bellos, I., Fitrou, G., Daskalakis, G., Thomakos, N., Papantoniou, N. and Pergialiotis, V. (2018) Soluble TREM-1 as a Predictive Factor of Neonatal Sepsis: A Meta-Analysis. Inflammation Research, 67, 571-578.
https://doi.org/10.1007/s00011-018-1149-4
[18] Cayir Koc, T.N., Kahvecioglu, D., Cetinkaya, A.K., Oktem, A., Tas, M., Dogan, H., et al. (2024) Soluble TREM-1 Is Not a Useful Biomarker in the Diagnosis of Early-Onset Neonatal Sepsis. Future Microbiology, 19, 1489-1496.
https://doi.org/10.1080/17460913.2024.2406654
[19] Zou, Q., Wen, W. and Zhang, X. (2014) Presepsin as a Novel Sepsis Biomarker. World Journal of Emergency Medicine, 5, 16-19.
https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.002
[20] 宁永忠, 王雪茹, 程田, 等.血清Presepsin临床检测的研究进展[J]. 中华检验医学杂志, 2019, 42(8): 700-704.
[21] Poggi, C., Lucenteforte, E., Petri, D., De Masi, S. and Dani, C. (2022) Presepsin for the Diagnosis of Neonatal Early-Onset Sepsis: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 176, 750-758.
https://doi.org/10.1001/jamapediatrics.2022.1647
[22] Pietrasanta, C., Ronchi, A., Vener, C., Poggi, C., Ballerini, C., Testa, L., et al. (2021) Presepsin (Soluble CD14 Subtype) as an Early Marker of Neonatal Sepsis and Septic Shock: A Prospective Diagnostic Trial. Antibiotics, 10, Article 580.
https://doi.org/10.3390/antibiotics10050580
[23] Kingsley, S.M.K. and Bhat, B.V. (2017) Role of Micrornas in Sepsis. Inflammation Research, 66, 553-569.
https://doi.org/10.1007/s00011-017-1031-9
[24] Fouda, E., Elrazek Midan, D.A., Ellaban, R., El-kousy, S. and Arafat, E. (2021) The Diagnostic and Prognostic Role of miRNA 15b and miRNA 378a in Neonatal Sepsis. Biochemistry and Biophysics Reports, 26, Article ID: 100988.
https://doi.org/10.1016/j.bbrep.2021.100988
[25] Ernst, L.M., Mithal, L.B., Mestan, K., Wang, V., Mangold, K.A., Freedman, A., et al. (2021) Umbilical Cord miRNAs to Predict Neonatal Early Onset Sepsis. PLOS ONE, 16, e0249548.
https://doi.org/10.1371/journal.pone.0249548
[26] Zhao, Y., Zhu, R. and Hu, X. (2024) Diagnostic Capacity of miRNAs in Neonatal Sepsis: A Systematic Review and Meta-Analysis. The Journal of Maternal-Fetal & Neonatal Medicine, 37, Article ID: 2345850.
https://doi.org/10.1080/14767058.2024.2345850
[27] Wojno, E.D.T. and Hunter, C.A. (2012) New Directions in the Basic and Translational Biology of Interleukin-27. Trends in Immunology, 33, 91-97.
https://doi.org/10.1016/j.it.2011.11.003
[28] Mirlekar, B. and Pylayeva-Gupta, Y. (2021) IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers, 13, Article 167.
https://doi.org/10.3390/cancers13020167
[29] Chen, Z., Wang, S., Erekosima, N., Li, Y., Hong, J., Qi, X., et al. (2013) IL-4 Confers Resistance to Il-27-Mediated Suppression on CD4+ T Cells by Impairing Signal Transducer and Activator of Transcription 1 Signaling. Journal of Allergy and Clinical Immunology, 132, 912-921.e5.
https://doi.org/10.1016/j.jaci.2013.06.035
[30] El-behi, M., Ciric, B., Yu, S., Zhang, G., Fitzgerald, D.C. and Rostami, A. (2009) Differential Effect of IL-27 on Developing versus Committed Th17 Cells. The Journal of Immunology, 183, 4957-4967.
https://doi.org/10.4049/jimmunol.0900735
[31] Neufert, C., Becker, C., Wirtz, S., Fantini, M.C., Weigmann, B., Galle, P.R., et al. (2007) IL‐27 Controls the Development of Inducible Regulatory T Cells and Th17 Cells via Differential Effects on Stat1. European Journal of Immunology, 37, 1809-1816.
https://doi.org/10.1002/eji.200636896
[32] Wang, Q. and Liu, J. (2016) Regulation and Immune Function of Il-27. Advances in Experimental Medicine and Biology, 941, 191-211.
https://doi.org/10.1007/978-94-024-0921-5_9
[33] Fahmy, E.M., Kamel, N.M., Abdelsadik, A., et al. (2020) Assessment of Interleukin-27 and Chemokine RANTES as Biomarkers for Early Onset Neonatal Sepsis. Egyptian Journal of Immunology, 27, 9-18.
[34] He, Y., Du, W.x., Jiang, H.y., Ai, Q., Feng, J., Liu, Z., et al. (2017) Multiplex Cytokine Profiling Identifies Interleukin-27 as a Novel Biomarker for Neonatal Early Onset Sepsis. Shock, 47, 140-147.
https://doi.org/10.1097/shk.0000000000000753