A Method Study of Characteristic Function of Random Variable

Tongbin Jiang

School of Mathematics and Physics, Huaiyin Institute of Technology, Huaian
Email: jiangtongbin2006@163.com

Received: Jul. 22nd, 2013; revised: Aug. 4th, 2013; accepted: Aug. 8th, 2013

Abstract: Distillation function is regulated by its eigenfunction, whose basic requirement, types, and definition will help to illustrate the solution approaches resorting to integral transform and integral method so as to solve practical problems by analyzing its practical application.

Keywords: Eigenfunction; Approach; Practical Application

随机变量特征函数的求法研究

蒋同斌

淮阴工学院数理学院，淮安
Email: jiangtongbin2006@163.com

收稿日期: 2013 年 7 月 22 日；修回日期: 2013 年 8 月 4 日；录用日期: 2013 年 8 月 8 日

摘 要：分布函数由其特征函数唯一决定，特征函数的基本要求、类型及其确定，利用积分变换和积分方法说明特征函数的求解方法，及其在实际当中的应用，解决实际问题。

关键词：特征函数；方法；实际应用

1. 绪论

概率论中，随机变量的数学期望和方差只能粗略地反映其分布函数的性质，而分布函数由其特征函数唯一决定[1]。关于特征函数，众多学者都对它的概念、性质、应用等进行了研究。

随机变量的分布主要分为离散型、连续型。离散随机变量 X 的特征函数可以表示成:

$$ f(t) = \sum_{k=1}^{\infty} e^{itk} p_k, -\infty < t < +\infty,$$

连续随机变量 X 的特征函数可以表示成:

$$ f(t) = \int_{-\infty}^{\infty} e^{itx} p(x) dx, -\infty < t < +\infty.$$

从以下方面进行讨论研究。

2. 判断函数为特征函数的条件与实例

下面说明函数成为特征函数应具备的条件，并举例说明。
2.1. 判断函数为特征函数的条件

辛钦一渡赫纳尔定理：函数 \(f(t) \) 是特征函数的充要条件是：
1) 函数 \(f(t) \) 是非负定性的；
2) \(f(t) \) 连续；
3) \(f(0) = 1 \)。

问题的关键是判定 \(f(t) \) 是否具有非负定性。即对于任意正整数 \(n \in N \)，任意实数 \(t \in R \)，任意复数 \(\lambda_i \in C \,(i=1,2,\cdots n) \) 均有 \(\sum_{i,j} f(t_i - t_j) \lambda_i \lambda_j \geq 0 \) 成立，由于 \(f(t) \) 是变量的复值函数，
即有
\[
\sum_{i,j} f(t_i - t_j) \lambda_i \lambda_j \geq 0
\]
则函数 \(f(t) \) 是特征函数的充要条件是:
1) 函数 \(f(t) \) 是非负定性的；
2) \(f(t) \) 连续；
3) \(f(0) = 1 \)。

2.2. Hermite 二次型

1) 任何一个 Hermite 矩阵对应一个二次型，是二次型的矩阵表示。
2) 二次型定义：设 \(P \) 是一数域，一个系数在数域 \(P \) 中的 \(X \) 的二次齐次多项式
 \[
 f(x_1, x_2, \cdots, x_n) = a_{11}x_1^2 + 2a_{12}x_1x_2 + \cdots + 2a_{nn}x_n^2
 \]
称为数域 \(P \) 上的一个 \(n \) 元二次型，或称二次型。
3) 二次型的矩阵都是对称的。
4) 实二次型 \(f(x_1, x_2, \cdots, x_n) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_ix_j = X^TAX \) 是正定的充分必要条件为矩阵 \(A \) 的顺序主子式全大于零。

2.3. 实例

如判定 \(f(t) = \frac{1}{1+t^2} \) 是否为特征函数？

解：由辛钦一渡赫纳尔定理可知 \(f(t) \) 连续并且 \(f(0) = 1 \)，验证 \(f(t) \) 的非负定性。已证明任意的 \(t, t_j \in R \)，
任意的正整数 \(n \)，均有 \(f(t) = \sum_{t_i} \frac{1}{1+(t_i - t_j)^2} \lambda_i \lambda_j \geq 0 \) 成立，
转化为 Hermite 二次型。取 \(t = 1, 2, \cdots, n \)，此二次型对应的 Hermite 矩阵
\[
A = \begin{pmatrix}
1 & \frac{1}{1+(1-2)^2} & \frac{1}{1+(1-3)^2} & \cdots & \frac{1}{1+(1-n)^2} \\
\frac{1}{1+(2-1)^2} & 1 & \frac{1}{1+(2-3)^2} & \cdots & \frac{1}{1+(2-n)^2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\frac{1}{1+(n-2)^2} & \frac{1}{1+(n-3)^2} & \cdots & 1
\end{pmatrix}
\]
它的各阶顺序主子式都大于 0，所以 \(f(t) \) 是正定的，即 \(f(t) = \frac{1}{1+t^2} \) 是特征函数。

3. 特征函数的求解方法

下面说明不同函数的特征函数的求解方法。

3.1. 根据特征函数的定义求解

例题 1：设随机变量 \(X \) 的分布如下（表 1），求 \(X \) 的特征函数。
解：已知 X 的分布列为 $p_k = P(X = x_k), k = 0, 1, 2, 3$，所以 X 的特征函数为：

$$f(t) = \sum_{k=0}^{\infty} e^{itx_k} p_k = 0.4e^{it0} + 0.3e^{it} + 0.2e^{it2} + 0.1e^{it3}$$

$$= 0.4 + 0.3e^{it} + 0.2e^{it2} + 0.1e^{it3}$$

例题 2
设离散随机变量 X 服从 $P(X = k) = (1 - p)^{k-1} p, k = 1, 2, \ldots$，求 X 的特征函数。
解：已知 X 的分布列为 $P(X = k) = (1 - p)^{k-1} p, k = 1, 2, \ldots$ 所以 X 的特征函数为

$$f(t) = \sum_{k=0}^{\infty} e^{itx_k} p_k = \sum_{k=0}^{\infty} e^{itk} (1 - p)^{k-1} p = p \sum_{k=0}^{\infty} e^{itk} q^{k-1}, \text{ 其中 } (q = 1 - p)$$

$$= p \lim_{k \to +\infty} \left(e^{itq} + e^{it2q} + \ldots + e^{itkq}\right) = p \lim_{k \to +\infty} \frac{e^{itq} \left(1 - e^{itq}\right)}{1 - e^{itq}} = pe^{it}$$

3.2 已知分布函数求解特征函数

例题 3
求分布函数 $F(x) = \frac{a}{2} \int_{-\infty}^{x} e^{-at} dt (a > 0)$ 的特征函数。
解：$p(x) = F'(x) = \frac{a}{2} e^{-at}$，

$$f(x) = \int_{-\infty}^{x} e^{itx} p(x) dx = \frac{a}{2} \int_{-\infty}^{x} e^{itx} e^{-at} dt = \frac{a}{2} \left[\int_{-\infty}^{0} e^{itx} e^{-at} dx + \int_{0}^{x} e^{itx} e^{-at} dx \right]$$

$$= \frac{a}{2} \left[\frac{1}{it + a} - \frac{1}{it - a} \right] = \frac{a^2}{a^2 + t^2}$$

3.3 常用分布的密度函数求解特征函数

1) 求均匀分布的特征函数
已知均匀分布 $U(a, b)$ 的密度函数为 $p(x) = \begin{cases} 1/b-a, & a < x < b; \\ 0, & \text{ 其他}. \end{cases}$
所以特征函数为 $f(t) = \int_{a}^{b} e^{itx} dx = \frac{e^{ibt} - e^{ita}}{it(b-a)}$.

2) 求指数分布的特征函数
已知指数分布 $\exp(\lambda)$ 的密度函数为 $p(x) = \begin{cases} xe^{-\lambda x}, & x > 0; \\ 0, & x \leq 0. \end{cases}$
所以特征函数为

$$f(t) = \int_{0}^{\infty} e^{itx} xe^{-\lambda x} dx = \lambda \left(\int_{0}^{\infty} \cos(tx) e^{-\lambda x} dx + i \int_{0}^{\infty} \sin(tx) e^{-\lambda x} dx \right)$$

$$= \lambda \left(\frac{\lambda}{\lambda^2 + t^2} + i \frac{\lambda}{\lambda^2 + t^2} \right) = \left(1 - \frac{it}{\lambda} \right)^{-1}$$

3) 求标准正态分布的特征函数
已知标准正态分布 $N(0, 1)$ 的密度函数为 $p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty$，所以特征函数为
蒋同斌 | 随机变量特征函数的求法研究

\[
f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx^2} dx = e^{\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-a)^2}{2}} dx
\]

其中 \(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = \sqrt{2\pi} \) 是利用复变函数中的圆周积分或广义积分求得的。

3.4. 利用独立随机变量和的特征函数为特征函数的积来求解和的特征函数

例题 4：设 \(Y \sim Ga(n, \lambda) \)，则 \(Y = X_1 + X_2 + \cdots + X_n \)；其中 \(X_i \) 独立同分布，且 \(X_i \sim \exp(\lambda) \)，由指数分布的特征函数 \(f_{X_i}(t) = \left(1 - \frac{it}{\lambda}\right)^{-1} \)，及独立随机变量和的特征函数为特征函数的积，得 \(f_Y(t) = \left(f_{X_1}(t) \right)^n = \left(1 - \frac{it}{\lambda}\right)^{-n} \)。

3.5. 用高效积分法求解特征函数

用 FFT 可靠性分析方法，及新的坐标平移方法处理负值随机变量问题；并用高效直接积分法求解特征函数。

说明如下：

1) FFT 的含义

FFT 是离散傅里叶变换的快速算法，可将一个信号变换到频域。一些信号在时域上很难看出什么特征，若变换到频域之后，就很容易看出特征了。另外，FFT 可以将一个信号的频谱提取出来，这在频谱分析方面是常用的。一个模拟信号，经过 ADC 采样之后，就变成了数字信号，从而就可以做 FFT 变换了。

2) 概率特征函数的定义及相关性质

随机变量的概率密度函数与特征函数可以表示为一个 Fourier 变换对，定义为

\[
\begin{align*}
F(\omega) &= \int_{-\infty}^{\infty} f(Y) e^{-i\omega Y} dY \\
 f(Y) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega Y} d\omega
\end{align*}
\]

(1)

其中 \(f(t) \) 和 \(F(\omega) \) 分别表示随机变量 \(Y \) 的概率密度函数与特征函数，\(\omega \) 为变换参数，\(i = \sqrt{-1} \)。特征函数的引进本质上是对分布函数作 Fourier 变换，它与分布函数存在一一对应关系，因而特征函数也是刻画随机变量分布的一种方式，随机变量的分布函数由其特征函数唯一决定。

3) 利用高效积分法求特征函数

利用 Fourier 的位移性质求(1) 中的 \(F(\omega) \) 有

\[
F(\omega) = \int_{-\infty}^{\infty} f(Y) e^{-i\omega Y} dY = E \left\{ e^{-i\omega Y} \right\} = E \left\{ \cos(\omega Y) \right\} - i E \left\{ \sin(\omega Y) \right\}
\]

(2)

对 \(f(Y) \) 进行坐标平移 \(t_0 \)，\(f(Y) \rightarrow f(Y-t_0) \)，于是式(2) 变为：

\[
\int_{-\infty}^{\infty} f(Y-t_0) e^{-i\omega Y} dY = e^{-i\omega t_0} \int_{-\infty}^{\infty} f(Y) e^{-i\omega Y} dY
\]

(3)

为了求式(3)先求式(2)，而式(2) 表明 \(F(\omega) \) 是另一函数 \(Y' = e^{-i\omega Y} \) 的均值。因为 \(Y = Y(V) \Rightarrow Y' = Y'(V) \)，所以式(2) 又可写作

\[
F(\omega) = E \left\{ Y'(V) \right\} = \int_{\Omega} Y'(V) f(V) dV
\]

(4)

\(\Omega \) 是积分区域，而式(4) 的积分可以完全利用高效数值积分法来完成。另外假设随机变量 \(x_1, x_2, \cdots, x_n \) 服从正态分布且相互独立。那么由于 \(x_1, x_2, \cdots, x_n \) 是 \(n \) 个相互独立的正态分布随机变量，因此，它们的联合概率密度函数可以表示为
蒋同斌 | 随机变量特征函数的求法研究

\[f(x_i) = \prod_{i=1}^{n} \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[-\frac{(x_i - \mu_i)^2}{2\sigma_i^2} \right] \]

（5）

于是式(4)的积分可以写为

\[\mu_r = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma_i} \exp \left[-\frac{(x_i - \mu_i)^2}{2\sigma_i^2} \right] dx_1 dx_2 \cdots dx_n \]

（6）

综上所述，求特征函数的具体时效性分以下四步：

1) 高效积分法求解响应函数 \(Y = Y(V) \) 的均差与方差 \(\sigma_y \)。
2) 根据傅里叶变换的位移性质，对特征函数进行平移。
3) 在频域进行离散采样。首先将 \(\omega \) 进行离散，\(\omega_j = (j-1)2\pi / T_p \) \((j = 1, 2, \ldots, N/2+1) \)。\(T_p = k\sigma_y, k \geq 8 \)。一般取 \(N = 2^m \)，\(m \) 为整数。然后利用式(4)用高效积分法求解。
4) 根据 Fourier 变换的对称性进行操作，实部正对称，虚部反对称，生成另外一半频率采样点，最后生成完整的频率采样向量。

4. 特征函数单调性与迭代数列收敛性之间的关系

利用特征函数单调性判断迭代数列收敛性并求其极限。

设数列 \(\{ x_n \} \) 满足迭代关系 \(x_{n+1} = c \sin x_n (n = 1, 2, \ldots; 0 < c \leq 1) \)，证明：对任意的初值 \(x_1 \)，\(\lim_{n \to \infty} x_n \) 存在并求此极限。

证明：对于任意的 \(x_1 \)，有 \(-1 \leq x_1 \leq 1(n = 2, 3, \ldots) \)，因此 \(F(x) = x - f(x) = x - c \cdot \sin x \) 是 \(\{ x_n \} \) 在区间 \([-1, 1]\) 上的特征函数。又当 \(x \in [-1, 1] \) 时，\(F'(x) = 1 - c \cdot \cos x \geq 0 \) （其中等号仅当 \(c = 1, x = 0 \) 时成立），故 \(F(x) \) 和 \(f(x) \) 在 \([-1, 1]\) 单调增加，且 \(F(0) = 0 \)。故由定理2知 \(\{ x_n \} \) 的极限存在且等于0。

同理可以证明 \(\{ x_n \} : x_{n+1} = -c \cdot \cos x_n (n = 1, 2, \ldots; 0 < c \leq 1) \) 的极限存在且 \(\lim_{n \to \infty} x_n = x_0 \)，其中 \(x_0 \in (-1, 0) \) 是 \(F(x) = x + c \cdot \cos x \) 的根。

5. 二维随机变量的特征函数

二维随机变量特征函数的求法

设 \((\xi_1, \xi_2) \sim N(m_1, \sigma_1^2; m_2, \sigma_2^2; r) \)，它的密度函数为

\[f(x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-r^2}} \exp \left[-\frac{(x_1 - m_1)^2}{\sigma_1^2} - \frac{2r(x_1 - m_1)(x_2 - m_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - m_2)^2}{\sigma_2^2} \right] \]

求特征函数。

解：它的特征函数为

\[f(t_1, t_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1x_1+t_2x_2)} f(x_1, x_2) dx_1 dx_2 \]

\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(t_1x_1+t_2x_2)} e^{-\frac{1}{2}(\sigma_1^2x_1^2+2\sigma_1\sigma_2r\sigma_1\sigma_2x_1x_2+\sigma_2^2x_2^2)} dx_1 dx_2 \]

特别，当 \(m_1 = m_2 = 0, \sigma_1 = \sigma_2 = 1 \) 时，即 \((\xi_1, \xi_2) \sim N(0, 1; 0, 1; r) \)，则

\[f(t_1, t_2) = e^{\frac{1}{2}(t_1^2-2r^{2}t_1t_2)} \]
当 \(\eta = a \xi_1 + \beta \xi_2 + r \), \((\alpha, \beta, \gamma)\) 为实常数时, \(\eta \) 的特征函数为

\[
f_\eta(t) = e^{itr} \cdot f(at, \beta t) = e^{it \left((am + \beta m) + \frac{1}{2} \sigma_\alpha^2 + 2 \sigma_\alpha \sigma_\beta \alpha \beta + \sigma_\beta^2 \right)}
\]

\[
= e^{it \left(\frac{1}{2} \sigma_\alpha^2 + 2 \sigma_\alpha \sigma_\beta \alpha \beta + \sigma_\beta^2 \right)}
\]

故: \(\eta \sim N \left(am + \beta m + r, \alpha^2 \sigma_1^2 + 2 \sigma_\alpha \sigma_\beta \alpha \beta + \beta^2 \sigma_2^2 \right) \)。

6. 特征函数的应用

下面主要说明特征函数在各方面的具体应用。

6.1. 在数学方面应用

用特征函数求解某些积分与级数的和

1) 在求积分中的应用

求 \(\int_{-\infty}^{\infty} \cos(ax) \cdot f(x) \, dx \), \(\int_{-\infty}^{\infty} \sin(ax) \cdot f(x) \, dx \) 的积分，其中 \(f(x) \) 可化成某随机变量的密度函数。

解：因为 \(e^{iat} = \cos(ax) + isin(ax) \)，

及 \(\cos(ax) = \frac{e^{iat} + e^{-iat}}{2} \), \(\sin(ax) = \frac{e^{iat} - e^{-iat}}{2} \)。

所以 \(E[\cos(ax)] = \frac{E(e^{iat}) + E(e^{-iat})}{2} \), \(E[\sin(ax)] = \frac{E(e^{iat}) - E(e^{-iat})}{2} \)。

因此，若 \(f(x) \) 是某随机变量 \(X \) 的密度函数，\(f(t) \) 是其特征函数时，

\[
\int_{-\infty}^{\infty} \cos(ax) \cdot f(x) \, dx = E(\cos(aX)) = \frac{f(a) + f(-a)}{2}
\]

2) 求伽玛分布 \(Ga(\alpha, \lambda) \) 的数学期望和方差。

解：因为伽玛分布 \(Ga(\alpha, \lambda) \) 的特征函数及其一、二阶导数为

\[
f(t) = \left(1 - \frac{it}{\lambda} \right)^{-\alpha} \, , \quad f'(0) = \frac{\alpha i}{\lambda} \, , \quad f''(0) = -\frac{\alpha(\alpha + 1)}{\lambda^2} \, , \quad f''(t) = \frac{\alpha(\alpha + 1)i^2}{\lambda^2} \left(1 - \frac{it}{\lambda} \right)^{-\alpha - 2}
\]

\[
Var(X) = -f''(0) + \left[f'(0) \right]^2 = -\frac{\alpha(\alpha + 1)}{\lambda^2} \left(1 - \frac{1}{\alpha} \right)^2 = \frac{\alpha(\alpha + 1)}{\lambda^2} - \frac{\alpha^2}{\lambda^2} = \frac{\alpha}{\lambda^2}
\]

3) 证明正态分布的可加性。

解：设 \(X \sim N(\mu_1, \sigma_1^2) \), \(Y \sim N(\mu_2, \sigma_2^2) \)，且 \(X \) 与 \(Y \) 独立。因为：

\[
f_X(t) = e^{-\frac{(x - \mu_1)^2}{2 \sigma_1^2}} \, , \quad f_Y(t) = e^{-\frac{(y - \mu_2)^2}{2 \sigma_2^2}}
\]

由性质独立随机变量和的特征函数为特征函数的积得

\[
f_{X+Y}(t) = f_X(t) \cdot f_Y(t) = e^{i(t \mu_1 + \mu_2) - \frac{(\sigma_1^2 + \sigma_2^2)}{2}}
\]

这正是 \(N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \) 的特征函数，再由特征函数的唯一性定理，即知

\(X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \)。

4) 求解 \(\int_{0}^{\infty} x^2 e^{-x^2} \, dx \)。 (可用递推法)

52
解: 用特征函数法来求解。设 \(X \sim N(0, \frac{1}{2}) \)，其密度函数为
\[
p(x) = \frac{1}{\sqrt{\pi}} e^{-x^2}
\]
则其特征函数为
\[
f_X(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{\pi}} e^{-x^2} dx = e^{\frac{1}{4} t^2} = \sum_{i=0}^{\infty} \left(-\frac{1}{4} \right)^i \frac{t^{2i}}{i!},
\]
故
\[
f_X^{(k)}(t) = \left(-\frac{1}{4} \right)^k \frac{(2k)!}{k!} + \left(-\frac{1}{4} \right)^{k+1} \frac{(2k+1)!}{(k+1)!} + \ldots
\]
所以
\[
f_X^{(k)}(0) = \left(-\frac{1}{2} \right)^k (2k-1)!!
\]
由特征函数的性质得
\[
E(X^k) = (-i)^k \frac{2k-1}{2^k} f_X^{(k)}(0) = \frac{(2k-1)!!}{2^k},
\]
由 \(2k \) 阶矩定义有
\[
E(X^{2k}) = \int_{-\infty}^{\infty} x^{2k} e^{-x^2} dx,
\]
故
\[
\int_{-\infty}^{\infty} x^{2k} e^{-x^2} dx = \frac{(2k-1)!!}{2^k},
\]
5）求解 \(\Gamma(k+1) = \int_{0}^{\infty} x^k e^{-x} dx = k! \)。
解：用特征函数来求伽玛函数。设随机变量 \(X \) 服从参数为 \(\frac{1}{2} \) 的指数分布，其密度函数为
\[
p(x) = e^{-x^2} 0 < x < \infty
\]
则其特征函数为
\[
f_X(t) = i(1-it)^2, f_X^{(k)}(t) = 2(2-3i^2), \ldots
\]
故
\[
f_X^{(0)}(0) = i, f_X^{(1)}(0) = 2i, \ldots
\]
于是
\[
E(X) = i - f_X^{(0)}(0) = 1, E(X^2) = (-i)^2 \cdot f_X^{(0)}(0) = 2!, \ldots
\]
由 \(k \) 阶矩的定义知：
\[
E(X^k) = \int_{0}^{\infty} x^k e^{-x} dx,
\]
6）求级数 \(\sum_{n=1}^{\infty} \left(\frac{m}{k} \right)^2 \) 和级数 \(\sum_{n=1}^{\infty} \left(\frac{m}{k} \right)^3 \)。
解：设 \(X \) 服从几何分布：
\[
P(X = m) = pq^m, (m = 1, 2, \ldots), q = 1 - p, 0 < p < 1,
\]
所以
\[
f_X(t) = \sum_{n=1}^{\infty} p q^{m-1} e^{itnq} = \sum_{n=1}^{\infty} \left(qe^{it} \right)^m = \frac{pe^{it}}{1-qe^{it}},
\]
故
\[
f_X^{(0)}(0) = i, f_X^{(1)}(0) = 2i, \ldots
\]
于是
\[
E(X^2) = (-i)^2 f_X^{(0)}(0) = (1-i)^2 \cdot f_X^{(0)}(0) = 2!
\]
又因为
\[
E(X^2) = \sum_{n=1}^{\infty} m^2 pq^{m-1}, E(X^3) = \sum_{n=1}^{\infty} m^3 pq^{m-1},
\]
所以： \(\sum_{n=1}^{\infty} m^2 pq^{m-1} = p^2 (1+q) \), \(\sum_{m=1}^{\infty} m^3 pq^{m-1} = p^3 (1+4q+q^2) \), 取
\[
q = \frac{1}{k}, p = 1 - \frac{1}{k^3},
\]
整理得：
\[
\sum_{m=1}^{\infty} \left(\frac{m}{k} \right)^2 = \frac{k^3 (k^2 + 1)}{(k^2 - 1)^3},
\]
取 \(q = \frac{1}{k}, p = 1 - \frac{1}{k^3} \).
整 理 得： \[\sum_{n=1}^{\infty} \left(\frac{m}{k^n} \right)^3 = \frac{k^3(k^6 + 4k^3 + 1)}{(k^3 - 1)^4} \]。

7) 设随机变量 \(Y_n \) 服从几何分布，参数 \(p = \frac{1}{n} \)。证明 \(Y_n \) 依分布收敛于 \(Z \)，其中 \(Z \) 服从指数分布。

证明：先计算 \(Y_n \) 的特征函数 \(f_n(t) = E(e^{itY_n}) = \sum_{k=0}^{\infty} \left(\frac{\lambda}{n} \right)^k \frac{1}{k!} e^{-\lambda/n} \)。其特征函数为

\[
\frac{\lambda e^{it}}{1 - \frac{\lambda}{n} e^{it}} \cdot \frac{\lambda e^{it}}{1 - \frac{\lambda}{n} e^{it}} = \frac{\lambda e^{it}}{\lambda - it + o(1)}
\]

当 \(n \to \infty \) 时，上式收敛于 \(\frac{\lambda}{\lambda - it} = \int_0^{\infty} e^{itx} \lambda e^{-\lambda x} \, dx = E(e^{itX}) \)，由连续性定理，\(Y_n \) 依分布收敛于 \(Z \)，其中 \(Z \) 服从参数为 \(\lambda \) 的指数分布。

6.2. 在生产实际中的应用

用特征函数的方法解决实际问题成为一种趋势，如无线电通信、保险系统、交通运输、信息查询等都有一定的应用。

6.2.1. 在无线通信环境中的应用

通信信号的调制识别技术在信号确认、干扰识别、频谱管理和电子对抗等多个领域具有广泛的应用。如通过分析 \(\alpha \) 噪声的性质，利用特征函数相位作为分类特征，实现调制类型识别，通过推导各种调制类型特征函数相位理论值，形成各类特征向量，经过分析和仿真测试表明该算法适合在各种 \(\alpha \) 噪声和高斯噪声下进行分类。

6.2.2. 在检测图片隐藏信息中的应用

引入特征函数来描述图片的统计规则性，并将图片小波子带系数及其线性预测误差的特征函数的高阶统计量作为图片的特征向量来建立分类模型能有效检测出含隐藏信息的图片。

6.2.3. 在保险系统中的应用

在保险系统中，\(r \) 个投保人的平均损失费服从指数分布的参数全相同和各不相同的情况下导出被保险人总损失费的分布密度函数，并对 \(r \) 个投保人的平均损失费服从指数分布的参数不全相同情况下导出被保险人总损失费的特征函数，为保险精算研究提供了基础。

设在一定范围、时间内，投保人数为服从某一离散分布的随机变量 \(r \)，不妨设 \(r \) 的分布列为：

\[
P_0, P_1, P_2, \ldots
\]

设第 \(i \) 个投保人的损失费为 \(X_i \) ，\(X_i \) 服从参数为 \(\lambda_i \) 的指数分布，

\[
X_i \sim \lambda_i e^{-\lambda_i t}, \quad t > 0,
\]

其中 \(\lambda_i > 0 \) (\(i = 1, 2, \ldots, r \))。若 \(X_i \) 服从独立同分布服从参数为 \(\lambda \) 的指数分布，即 \(\lambda_i = \lambda (i = 1, 2, \ldots, r) \)，则 \(r \) 个投保人的总损失费 \(Y = \sum_{i=1}^{r} X_i \) 的分布密度为

\[
f_Y(y) = \begin{cases}
\sum_{k=1}^{\infty} \lambda e^{-\lambda y} \frac{(\lambda y)^{k-1}}{(k-1)!} P_k, & y > 0, \\
0, & y \leq 0
\end{cases}
\]

其期望为

\[
E(Y) = E(X_1 + X_2 + \cdots + X_r) = \sum_{k=1}^{\infty} E(X_1 + X_2 + \cdots + X_r | r = k) P(r = k) = \sum_{k=1}^{\infty} k P_k = \frac{1}{\lambda} \sum_{k=1}^{\infty} k P_k
\]
蒋同斌 | 随机变量特征函数的求法研究

可以根据 \(r \) 取值的不同得到不同的总损失费。因为保险公司在保险费定价时需要知道被保险人总损失的分布及期望，此项研究具有现实意义。

6.2.4. 在交通运输方面的应用

由于交通运输中的随机问题很多。如牵引机车台数问题，用例子说明：

设铁路货物列车由 \(n \) 辆车组成，每辆车的重量为随机变量 \(X \)（单位：\(t \)），其数学期望值为 \(m_x \) 和方差 \(\sigma_x \)，车辆数 \(n \) 可以看作一个比较大的数，机车牵引重量不超过 \(q \) 吨。如果列车重量超过 \(q \) 吨需要双机牵引，试求一台机车不能牵引列车的概率？如果列车编挂 \(n_1 \) 辆敞车，\(n_2 \) 辆平板，\(n_3 \) 辆罐车，各种车辆重量的数学期望为 \(m_i \) （\(i = 1, 2, 3 \)）和方差 \(D_i \) （\(i = 1, 2, 3 \)）。

设列车重量 \(Q = \sum_{i=1}^{n} x_i \)，\(n \) 是一个比较大的数，随机变量 \(Q \) 近似于正态分布，参数 \(q_m \) 和方差 \(q_{\sigma} \)：

\[
P\{Q > q\} = 1 - \left[0.5 + \phi(q_m - q)/\left(\sqrt{n} \cdot \sigma_x\right)\right]
\]

因为 \(m_q = \sum_{i=1}^{n} m_i \)，\(D_q = \sum_{i=1}^{n} D_i \)，\(\sigma_q = \sqrt{D_q} \)

因此一台机车拉不动列车重量的概率为 \(P\{Q > q\} \approx 0.5 - \left[(q_m - q)/\sigma_q\right] \)。

6.2.5. 在数据库查询方面的应用

特征函数在数据库查询方面也有着一定的应用。利用特征函数来改善系统效率，提高查询速度。从结构上讲，利用 SQL 内部的基本数符和函数，特征函数可编写成数量表达式，具体的编码依赖于各种语言的内部特性以及涉及到的变量的数据类型。目前已开发了处理各种数据类型的技术，在此简单介绍将特征函数限于数字类型的实例。

特征函数一般的编码形式为 \(1 - \text{abs} (\text{sign} (A - B)) \)， \(\text{sign} (\) \) 和 \(\text{abs} (\) \) 是内部 Sybase 函数。\(\text{abs} (\) \) 返回变量的绝对值；当变量为负数、零和正数时 \(\text{sign} (\) \) 分别返回 \(-1\)，\(0 \)，\(+1 \)。

以下是特征函数的编码（不考虑空值情况）：

\[
\delta [A = B] = 1 - \text{abs} (\text{sign} (A - B))
\]

\[
\delta [A < B] = 1 - \text{sign} (1 + \text{sign} (A - B))
\]

\[
\delta [A <= B] = \text{sign} (1 - \text{sign} (A - B))
\]

\[
\delta [A > B] = 1 - \text{sign} (1 - \text{sign} (A - B))
\]

\[
\delta [A >= B] = \text{sign} (1 + \text{sign} (A - B))
\]

例如对于表 student (name, status, parincome, selfincome)，它包括学生姓名、独立状况（1代表独立，0代表非独立）和两种收入（来自父母和自己的）。假设要生成表 (name, income)，分别包括非独立学生和独立学生来自父母和自己的收入，传统的 SQL 方法如式 (1)

\[
\text{SELECT} \text{ name, income = parincome * status + selfincome * (1 - status)} \\
\text{FROM students}
\]

而利用上述讨论的特征函数查询，语句如式 (2)

\[
\text{SELECT name, income = parincome * } \delta [\text{status = 1}] + \text{selfincome * } \delta [\text{status = 0}] \\
\text{FROM students}
\]
传统的查询方法，如式(1)，一旦问题复杂化，即状态不仅是0或者1时，用公式不能直接表达出问题。例如条件不只一个时，如考虑属性“年龄”，我们利用特征函数编码的方法得到式(3)的查询语句:

\[
\begin{align*}
SELECT & \text{name, income = parincome } \ast \delta[\text{status = 1}] \ast \delta[\text{age } \leq 19] + \text{selfincome } \ast \text{sign} (\delta[\text{status = 0}] + \delta[\text{age } > 23]) \\
& + (\text{parincome } + \text{selfincome/2.0}) \ast ((1 - \delta[\text{status = 1}]) \ast \delta[\text{age } \leq 19] - \text{sign} (\delta[\text{status = 0}]) \ast \delta[\text{age } > 23])
\end{align*}
\]

(3)

\[\text{FROM students}\]

此查询过程是：学生在 19 岁或 19 岁以下且非独立的，结果返回 parincome；学生独立或大于 23 岁的，结果返回 selfincome；其它情况则返回算术平均值。传统的 SQL 解决条件查询问题需要多个 SQL 语句[7]，对每个条件进行一次数据访问，最后通过 UNION 合成果集。而现在只用一个 SQL 语句，做一次数据访问，这种方法不仅节约了查询所需访问数据表的次数，节省时间，减轻计算机工作量。

7. 结论

随机变量特征函数的求法及应用，对于初学者来说是有难度的。傅里叶变换是一个有效工具，特征函数能够决定分布函数，并且具有好的性质，是研究概率分布的最好的方法，特别是研究随机变量序列的概率分布的极限问题起关键作用，论文的目的是利用积分变换和积分方法，结合具体实例进行分析说明，有利于我们更好地认识特征函数[8]。

论文首先用辛钦—渡赫纳尔定理给出了判断函数是否为特征函数，并运用几种不同的方法求解特征函数，使其在数学领域和实际生活中得到广泛的应用。

参考文献 (References)