富营养化对盐沼生态系统土壤有机碳库固定潜力影响机理研究进展
Mechanism of Eutrophication Affecting Salt Marsh Soil Organic Carbon Sequestration Potential
DOI: 10.12677/HJSS.2017.54007, PDF, HTML, XML, 下载: 1,940  浏览: 4,188 
作者: 刘金娥*, 苏海蓉, 徐杰, 黄黄, 王国祥*:南京师范大学环境学院,江苏省地理信息资源开发与利用协同创新中心,江苏 南京
关键词: 富营养化盐沼生态系统固碳潜力土壤碳库Eutrophication Salt Marsh Ecosystem Carbon Sequestration Potential Soil Organic Carbon Pool
摘要: 随着工农业的发展,沿海地区水体富营养化的程度加剧,严重威胁了海滨湿地生态系统的功能。本文综述了富营养化对盐沼外来植物竞争能力、盐沼植物群落演替、盐沼植物生长策略及沉积环境、盐沼植物对大气二氧化碳浓度增加的响应以及植物碳分配策略的影响等方面研究进展,总结了富营养化对盐沼的生态系统固碳潜力的效应及可能的作用机理,指出未来的研究方向。
Abstract: With the development of human activities, more nitrogen and phosphorus are released into marine ecosystem, leading to heavier eutrophication, which threatens the function of the coastal wetland ecosystem. This paper reviewed the research progresses on the eutrophication affecting the salt marsh ecosystems including the effects of eutrophication on the alien plant competition ability, salt marsh plant community succession, salt marsh plant growth strategy and sedimentary environment, the responses of salt marsh plants to the atmospheric carbon dioxide concentration increase and the influence on plant carbon allocation strategy, discussed the effects of eutrophication on salt marsh soil organic carbon and its possible mechanism, and suggested the valuable research directions in this field.
文章引用:刘金娥, 苏海蓉, 徐杰, 黄黄, 王国祥. 富营养化对盐沼生态系统土壤有机碳库固定潜力影响机理研究进展[J]. 土壤科学, 2017, 5(4): 53-60. https://doi.org/10.12677/HJSS.2017.54007

参考文献

[1] Bannon, R.O. and Roman, C.T. (2008) Using Stable Isotopes to Monitor Anthropogenic Nitrogen Inputs to Estuaries. Ecological Ap-plications, 18, 22-30.
https://doi.org/10.1890/06-2006.1
[2] Lovelock, C.E., Ball, M.C., Martin, K.C., et al. (2009) Nutrient Enrichment Increases Mortality of Mangroves. Plos One, 4, e5600.
https://doi.org/10.1371/journal.pone.0005600
[3] Deegan, L.A., Johnson, D.S., Warren, R.S., et al. (2012) Coastal Eutrophication as a Driver of Salt Marsh Loss. Nature, 490, 388-392.
https://doi.org/10.1038/nature11533
[4] Yasin, J.A., Kroeze, C. and Mayorga, E. (2010) Nutrients Export by Rivers to the Coastal Waters of Africa: Past and Future Trends. Global Biogeochemical Cycles, 24, 90-98.
https://doi.org/10.1029/2009GB003568
[5] Liao, C.Z., Luo, Y., Jiang, L.F., et al. (2007) Invasion of Spartina alterniflora En-hanced Ecosystem Carbon and Nitrogen Stocks in the Yangtze Estuary, China. Ecosystems, 10, 1351-1361.
https://doi.org/10.1007/s10021-007-9103-2
[6] Funk, J.L. and Vitousek, P.M. (2007) Resource-Use Efficiency and Plant Invasion in Low-Resource Systems. Nature, 446, 1079-1081.
https://doi.org/10.1038/nature05719
[7] Gross, K.L., Mittelbach, G.G. and Reynolds, H.L. (2008) Grassland Invisibility and Diversity: Responses to Nutrients, Seed Input, and Disturbance. Ecology, 86, 476-486.
https://doi.org/10.1890/04-0122
[8] Pennings, S.C., Stanton, L.E. and Brewer, J.S. (2002) Nutrient Effects on the Composition of Salt Marsh Plant Communities along the Southern Atlantic and Gulf Coasts of the United States. Estuaries and Coasts, 25, 1164-1173.
https://doi.org/10.1007/BF02692213
[9] Levine, J.M., Brewer, J.S. and Bertness, M.D. (1998) Nutrients, Competition and Plant Zonation in a New England Salt Marsh. Journal of Ecology, 86, 285-292.
https://doi.org/10.1046/j.1365-2745.1998.00253.x
[10] Valéry, L., Radureau, A. and Lefeuvre, J.C. (2017) Spread of the Native Grass Elymus athericus in Salt Marshes of Mont-Saint-Michel Bay as an Unusual Case of Coastal Eutrophication. Journal of Coastal Conservation, 21, 421-433.
https://doi.org/10.1007/s11852-016-0450-z
[11] 袁义福, 郭卫华, 王仁卿. 低营养条件下外来种火炬树与本地种麻栎幼苗在生物量分配策略上的差异[EB/OL].北京: 中国科技论文在线.
http://www.paper.edu.cn/releasepaper/content/201302-41, 2013-01-28.
[12] Tyler, A.C., Lambrinos, J.G. and Grosholz, E.D. (2007) Nitrogen Inputs Promote the Spread of an Invasive Marsh Grass. Ecological Applications, 17, 1886-1898.
https://doi.org/10.1890/06-0822.1
[13] 常瑞英. 养分水平和氮磷比对入侵植物空心莲子草与非入侵种竞争关系的影响[D]: [硕士学位论文]. 济南: 山东大学, 2013.
[14] 全国明, 谢俊芳, 章家恩, 等. 氮、磷养分对飞机草营养器官表型可塑性的影响[J]. 生态学杂志, 2014, 33(10): 2625-2632.
[15] Herr-Turoff, A. and Zedler, J.B. (2007) Does Morphological Plasticity of the Phalaris arundinacea Canopy Increase Invasiveness? Plant Ecology, 193, 265-277.
https://doi.org/10.1007/s11258-007-9264-2
[16] Jiang, L.F., Luo, Y.Q., Chen, J.K, et al. (2009) Ecophysiological Characteristics of Invasive Spartina alterniflora and Native Species in Salt Marshes of Yangtze River Estuary, China. Estuarine Coastal & Shelf Sci-ence, 81, 74-82.
https://doi.org/10.1016/j.ecss.2008.09.018
[17] 丛雪, 吴岩, 鲁萍, 等. 氮素波动对反枝苋和大豆最大净光合速率和光合氮利用效率的影响[J]. 作物杂志, 2013(1): 73-77.
[18] 胡朝臣, 刘学炎, 类延宝, 等. 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征[J]. 植物生态学报, 2016, 40(11): 1145-1153.
[19] Mozdzer, T.J., Zieman, J.C. and Mcglathery, K.J. (2010) Nitro-gen Uptake by Native and Invasive Temperate Coastal Macrophytes: Importance of Dissolved Organic Nitrogen. Estuaries and Coasts, 33, 784-797.
https://doi.org/10.1007/s12237-009-9254-9
[20] Bertness, M.D., Ewanchuk, P.J. and Silliman, B.R. (2002) Anthropogenic Modification of New England Salt Marsh Landscapes. Proceedings of the National Academy of Sciences of the United States of Ameri-ca, 99, 1395-1398.
https://doi.org/10.1073/pnas.022447299
[21] Fox, L., Valiela, I. and Kinney, E.L. (2012) Vegetation Cover and Elevation in Long-Term Experimental Nutrient-Enrichment Plots in Great Sippewissett Salt Marsh, Cape Cod, Massachusetts: Implications for Eu-trophication and Sea Level rise. Estuaries and Coasts, 35, 445-458.
https://doi.org/10.1007/s12237-012-9479-x
[22] 张丽辉. 鸭绿江湿地外来种禾叶慈姑的生态适应机制[D]: [博士学位论文]. 长春: 东北师范大学, 2014.
[23] Isbell, F., Reich, P.B., Tilman, D., et al. (2013) Nutrient Enrichment, Biodiversity Loss, and Consequent Declines in Ecosystem Productivity. Proceedings of the Na-tional Academy of Sciences, 110, 11911-11916.
https://doi.org/10.1073/pnas.1310880110
[24] Saltonstall, K. and Stevenson, J.C. (2007) The Effect of Nutrients on Seedling Growth of Native and Introduced Phragmites australis. Aquatic Botany, 86, 331-336.
https://doi.org/10.1016/j.aquabot.2006.12.003
[25] Boyer, K.E. and Zedler, J.B. (1999) Nitrogen Addition Could Shift Plant Commu-nity Composition in a Restored California Salt Marsh. Restoration Ecology, 7, 74-85.
https://doi.org/10.1046/j.1526-100X.1999.07109.x
[26] Zhao, Y.J., Hua, Q., Zhao, C.J., et al. (2010) Phenotypic Plasticity of Spartina alterniflora, and Phragmites australis, in Response to Nitrogen Addition and Intraspecific Competition. Hydrobiologia, 637, 143-155.
https://doi.org/10.1007/s10750-009-9992-5
[27] He, Q. and Silliman, B.R. (2015) Biogeographic Consequences of Nutrient En-richment for Plant-Herbivore Interactions in Coastal Wetlands. Ecology Letters, 18, 462-471.
https://doi.org/10.1111/ele.12429
[28] 张文瑾, 张宇清, 佘维维, 等. 氮添加对油蒿群落植物叶片生态化学计量特征的影响[J]. 环境科学研究, 2016, 29(1): 52-58.
[29] Kirwan, M.L. and Megonigal, J.P. (2013) Tidal Wetland Stability in the Face of Human Im-pacts and Sea-Level Rise. Nature, 504, 53-60.
https://doi.org/10.1038/nature12856
[30] Anisfeld, S.C. and Hill, T.D. (2012) Fertilization Effects on Elevation Change and Belowground Carbon Balance in a Long Island Sound Tidal Marsh. Estuaries and Coasts, 35, 201-211.
https://doi.org/10.1007/s12237-011-9440-4
[31] Vivanco, L., Irvine, I.C. and Martiny, J.B. (2015) Nonlinear Re-sponses in Salt Marsh Functioning to Increased Nitrogen Addition. Ecology, 96, 936-947.
https://doi.org/10.1890/13-1983.1
[32] Watson, E.B., Oczkowski, A.J., Wigand, C., et al. (2014) Nutrient Enrichment and Pre-cipitation Changes Do Not Enhance Resiliency of Salt Marshes to Sea Level Rise in the Northeastern U.S.. Climatic Change, 125, 501-509.
https://doi.org/10.1007/s10584-014-1189-x
[33] Mckee, K.L., Cahoon, D.R. and Feller, I.C. (2007) Caribbean Mangroves Adjust to Rising Sea Level through Biotic Controls on Soil Elevation Change. Global Ecology & Biogeography, 16, 545-556.
https://doi.org/10.1111/j.1466-8238.2007.00317.x
[34] Johnson, D.S., Warren, R.S., Deegan, L.A., et al. (2016) Saltmarsh Plant Responses to Eutrophication. Ecological Applications, 26, 2649-2661.
https://doi.org/10.1002/eap.1402
[35] Langley, J.A. and Megonigal, J.P. (2010) Ecosystem Response to Elevated CO(2) Levels Limited by Nitrogen-Induced Plant Species Shift. Nature, 466, 96-99.
https://doi.org/10.1038/nature09176
[36] 梁国鹏, Houssou, A.A., 吴会军, 等. 施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响[J]. 应用生态学报, 2016, 27(6): 1917-1924.
[37] 全国明, 代亭亭, 章家恩, 等. 假臭草入侵对土壤养分与微生物群落功能多样性的影响[J]. 生态学杂志, 2016, 35(11): 2883-2889.
[38] Turner, R.E. (2011) Beneath the Salt Marsh Cano-py: Loss of Soil Strength with Increasing Nutrient Loads. Estuaries and Coasts, 34, 1084-1093.
https://doi.org/10.1007/s12237-010-9341-y
[39] Howes, N.C. (2010) Hurricane-Induced Failure of Low Salinity Wetlands. Proceed-ings of the National Academy of Sciences of the United States of America, 107, 14014-14019.
https://doi.org/10.1073/pnas.0914582107
[40] Turner, R.E., Howes, B.L., Teal, J.M., et al. (2009) Salt Marshes and Eutrophication: An Unsustainable Outcome. Limnology & Oceanography, 54, 1634-1642.
https://doi.org/10.4319/lo.2009.54.5.1634
[41] Graham, S.A. and Mendelssohn, I.A. (2016) Coastal Wetland Stability Maintained through Counterbalancing Accretionary Responses to Chronic Nutrient Enrichment. Ecology, 95, 3271-3283.
https://doi.org/10.1890/14-0196.1
[42] Reich, P.B., Hungate, B.A. and Luo, Y. (2006) Carbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide. Annual Review of Ecology Evolution & Systematics, 37, 611-636.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
[43] Oren, R., Ellsworth, D.S., Johnsen, K.H., et al. (2001) Soil Fer-tility Limits Carbon Sequestration by Forest Ecosystems in a CO2-Enriched Atmosphere. Nature, 411, 469-472.
https://doi.org/10.1038/35078064
[44] 郑娇. 光照、氮素、水分对油松光合固碳能力的影响[D]: [硕士学位论文]. 北京: 北京林业大学, 2013.
[45] Reich, P.B., Hobbie, S.E., Lee, T., et al. (2006) Nitrogen Limitation Constrains Sustainability of Ecosystem Re-sponse to CO2. Nature, 440, 922-925.
https://doi.org/10.1038/nature04486
[46] Schneider, M.K., Lüscher, A., Richter, M., et al. (2004) Ten Years of Free-Air CO2, Enrichment Altered the Mobilization of N from Soil in Lolium perenne L. Swards. Global Change Biology, 10, 1377-1388.
https://doi.org/10.1111/j.1365-2486.2004.00803.x
[47] 闫佳毅, 张宇清, 秦树高, 等. 不同水分条件下苔藓结皮光合能力对氮素添加量的响应[J]. 水土保持通报, 2015, 35(6): 75-80.
[48] 孙金伟, 吴家兵, 任亮, 等. 氮添加对长白山阔叶红松林2种树木幼苗光合生理生态特征的影响[J]. 生态学报, 2016, 36(21): 6777-6785.
[49] 游成铭, 胡中民, 郭群, 等. 氮添加对内蒙古温带典型草原生态系统碳交换的影响[J]. 生态学报, 2016, 36(8): 2142-2150.
[50] Langley, J.A., Mckee, K.L., Cahoon, D.R., et al. (2009) Elevated CO2 Stimulates Marsh Elevation Gain, Counterbalancing Sea-Level Rise. Proceedings of the National Academy of Sci-ences of the United States of America, 106, 6182-6186.
https://doi.org/10.1073/pnas.0807695106
[51] Xia, J. and Wan, S. (2008) Global Response Patterns of Terrestrial Plant Species to Nitrogen Addition. New Phytologist, 179, 428-439.
https://doi.org/10.1073/pnas.0807695106
[52] Reich, P.B. (2009) Elevated CO2 Reduces Losses of Plant Diversity Caused by Nitrogen Deposition. Science, 326, 1399-1402.
https://doi.org/10.1126/science.1178820
[53] Bertness, M.D. and Pennings, S.C. (2002) Spatial Variation in Process and Pattern in Salt Marsh Plant Communities in Eastern North America. In: Weinstein, M.P. and Kreeger, D.A., Eds., Concepts and Controversies in Tidal Marsh Ecology, Springer Netherlands, 39-57.
https://doi.org/10.1007/0-306-47534-0_4
[54] Cathleen, W., Patricia, B., Mark, S., et al. (2009) Soil Respiration Rates in Coastal Marshes Subject to Increasing Watershed Nitrogen Loads in Southern New England, USA. Wetlands, 29, 952-963.
https://doi.org/10.1672/08-147.1
[55] Morris, J.T. and Bradley, P.M. (1999) Effects of Nutrient Loading on the Carbon Balance of Coastal Wetland Sediments. Limnology & Oceanography, 44, 699-702.
https://doi.org/10.4319/lo.1999.44.3.0699
[56] Reef, R., Spencer, T., Mӧller, I., et al. (2016) The Effects of Elevated CO2 and Eutrophication on Surface Elevation Gain in a European Salt-marsh. Global Change Biology, 23, 881-890.
https://doi.org/10.1111/gcb.13396
[57] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014, 38(2): 159-166.
[58] Valiela, I. (2015) The Great Sippe-wissett Salt Marsh Plots—Some History, Highlights, and Contrails from a Long-Term Study. Estuaries and Coasts, 38, 1099-1120.
https://doi.org/10.1007/s12237-015-9976-9
[59] 于钦民, 徐福利, 王渭玲. 氮、磷肥对杉木幼苗生物量及养分分配的影响[J]. 植物营养与肥料学报, 2014, 20(1): 118-128.
[60] 徐伟强, 周璋, 李意德, 等. 植被因子和土壤氮对南亚热带常绿阔叶次生林细根生物量的影响[J]. 生态环境学报, 2016, 25(2): 183-188.
[61] 刘益君, 闫文德, 郑威, 等. 施氮对湿地松(Pinuselliottii)林土壤呼吸和相关因子的影响[J]. 生态学报, 2016, 36(2): 342-349.
[62] 詹书侠, 郑淑霞, 王扬, 等. 羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联[J]. 植物生态学报, 2016, 40(1): 36-47.
[63] Liang, C. and Balser, T.C. (2012) Warming and Nitrogen Deposition Lessen Microbial Residue Contribution to Soil Carbon Pool. Nature Communications, 3, 1222.
https://doi.org/10.1038/ncomms2224
[64] Schmidt, M.W., Torn, M.S., Abiven, S., et al. (2011) Persistence of Soil Organic Mat-ter as an Ecosystem Property. Nature, 478, 49-56.
https://doi.org/10.1038/nature10386
[65] Kramer, C., Trumbore, S., Fröberg, M., Dozal, L.M.C., Zhang, D.C., Xu, X.M., Santos, G.M. and Hanson, P.J. (2010) Recent (4 Year Old) Leaf Litter Is Not a Major Source of Microbial Carbon in a Temperate Forest Mineral Soil. Soil Biology and Biochemistry, 42, 1028-1037.
https://doi.org/10.1016/j.soilbio.2010.02.021
[66] Bird, J.A., Kleber, M. and Torn, M.S. (2008) C and N Stabilization Dynamics in Soil Organic Matter Fractions during Needle and Fine Root Decomposition. Organic Geochemistry, 39, 465-477.
https://doi.org/10.1016/j.orggeochem.2007.12.003
[67] Godbold, D.L., Hoosbeek, M.R., Lukac, M., et al. (2006) Mycorrhizal Hyphal Turnover as a Dominant Process for Carbon Input into Soil Organic Matter. Plant and Soil, 281, 15-24.
https://doi.org/10.1007/s11104-005-3701-6
[68] Fontaine, S., Barot, S., Barré, P., et al. (2007) Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450, 277-280.
https://doi.org/10.1038/nature06275
[69] Lehmann, E.A. and Johansson, A.M. (2010) Reduction of Forest Soil Respiration in Response to Nitrogen Deposition. Nature Geoscience, 3, 315-322.
https://doi.org/10.1038/ngeo844
[70] 郭卫东, 章小明, 杨逸萍, 等. 中国近岸海域潜在性富营养化程度的评价[J]. 应用海洋学学报, 1998(1): 64-70.