APP  >> Vol. 3 No. 6 (August 2013)

    无谐振腔结构的四级级联拉曼光纤激光器
    Multiple Cascaded Raman Fiber Laser with a Cavity-Free Configuration

  • 全文下载: PDF(503KB) HTML   XML   PP.125-128   DOI: 10.12677/APP.2013.36024  
  • 下载量: 2,213  浏览量: 6,630   国家自然科学基金支持

作者:  

郭春雨,伍一鸣,杨锦辉:深圳大学电子科学与技术学院,深圳市激光工程重点实验室,深圳

关键词:
拉曼光纤激光器多阶斯托克斯辐射无谐振腔激光器高非线性光纤 Raman Fiber Laser; Multiple Stokes Emission; Cavity-Free Laser; Highly Nonlinear Fiber

摘要:

利用20 W连续波掺Yb光纤激光器泵浦一段520 m长的高非线性光纤,在无谐振腔的简单结构中实现了四级级联拉曼激光输出,各阶斯托克斯波长分别为1121 nm、1178 nm、1247 nm和1319 nm,总的频移量为53 THz,最大输出功率达到3.2 W。实验中描述了斯托克斯光的转换过程,并进行了相应分析。无谐振腔结构中多级拉曼激光的产生被认为是基于瑞利散射效应的随机分布反馈,并且证实通过高非线性光纤作为拉曼增益介质可以缩短无谐振腔拉曼光纤激光器所需的光纤长度。

By using a 520-m-long highly nonlinear fiber (HNLF) pumped by a 20 W CW Yb-doped fiber laser, four Raman Stokes emissions are demonstrated in a simple cavity-free configuration. The Stokes wavelengths are 1121 nm, 1178 nm, 1247 nm and 1319 nm respectively with a total frequency shift of 53 THz, and the maximum output power is 3.2 W. The evolution of the multiple Raman Stokes emission is presented and analyzed. The generation of the multiple Stokes from the cavity-free configuration is attributed to the random distributed feedback based on Rayleigh scattering. It is also demonstrated that the fiber length of the cavity-free Raman fiber laser can be largely shortened by using a HNLF as the Raman gain medium.

 

文章引用:
郭春雨, 伍一鸣, 杨锦辉. 无谐振腔结构的四级级联拉曼光纤激光器[J]. 应用物理, 2013, 3(6): 125-128. http://dx.doi.org/10.12677/APP.2013.36024

参考文献

[1] Z. Xiong, N. Moore, Z. G. Li and G. C. Lim. 10-W Raman fiber lasers at 1248 nm using phosphosilicate fibers. Journal of Lightwave Tech-nology, 2003, 21(10): 2377-2381.
[2] R. Vallée, E. Bélanger, B. Déry, M. Bernier and D. Faucher. Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings. Journal of Light Wave Technology, 2006, 24(12): 5039-5043.
[3] Y. Feng, L. R. Taylor and D. B. Calia. 150 W highly-efficient Raman fiber laser. Optics Express, 2009, 17(26): 23678-23683.
[4] Y. Emori, K. Tanaka, C. Headley and A. Fujisaki. High-power cascaded Raman fiber laser with 41-W output power at 1480-nm band. Conference on Lasers and Electro-Optics, Baltimore, 6 May 2007.
[5] P. Suret, N. Y. Joly, G. Mélin and S. Randoux. Self-oscillations in a cascaded Raman laser made with a highly nonlinear photonic crystal fiber. Optics Express, 2008, 16(15): 11237- 11246.
[6] J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, T. Taunay, C. Headley and D. J. DiGiovanni. Raman fiber laser with 81 W output power at 1480 nm. Optics Letters, 2010, 35(18): 3069-3071.
[7] V. R. Supradeepa, J. W. Nicholson, C. Headley, Y.-W. Lee, B. Palsdottir and D. Jakobsen. Cas-caded Raman fiber laser at 1480 nm with output power of 104 W. Proceedings of SPIE, 2012, 8237: 82370J.
[8] S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov and E. V. Podivilov. Spectral broadening in Raman fiber lasers. Optics letters, 2006, 31(20): 3007-3009.
[9] S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania Castanon, V. Karalekas and E. V. Podivilov. Random distributed feedback fibre laser. Nature Photon-ics, 2010, 4(4): 231-235.
[10] D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov and S. K. Turitsyn. Raman fiber lasers with a random distributed feed-back based on Rayleigh scattering. Physical Review A, 2010, 82(3): 033828.
[11] 胡朋兵, 董新永. 随机分布反馈光纤激光器研究进展[J]. 激光与光电子学进展, 2011, 48: 110606.
[12] I. D. Vatnik, D. V. Churkin, S. A. Babin and S. K. Turitsyn. Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm. Optics Express, 2011, 19(19): 18486-18494.
[13] W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang and X. H. Jia. Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity. Optics Express, 2012, 20(13): 14400-14405.
[14] W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia and H. Wu. Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber. Optics Express, 2013, 21(7): 8544-8549.
[15] Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia and W. L. Zhang. Long-distance fiber-optic point-sensing systems based on random fiber lasers. Optics Express, 2012, 20(16): 17695- 17700.