MS  >> Vol. 4 No. 4 (July 2014)

    类金刚石薄膜的分子动力学研究
    The Molecular Dynamics Simulation on the Diamond-Like Carbon Films

  • 全文下载: PDF(519KB) HTML    PP.145-151   DOI: 10.12677/MS.2014.44022  
  • 下载量: 2,338  浏览量: 10,277   国家科技经费支持

作者:  

杜敏永,张 铭,魏纪周,邓浩亮,楚上杰:北京工业大学,材料科学与工程学院,北京;
任 坤:北京工业大学,电子信息与工程学院,北京

关键词:
类金刚石薄膜分子动力学模拟原子相互作用势Diamond-Like Carbon Films Molecular Dynamics Simulation Interatomic Potentials

摘要:

自类金刚石薄膜发现以来,由于具有优越的物理性能,它的研究和应用都十分的广泛。因此,为了得到更好的性能,探索更佳的结构,早在上世纪80年代就已经开始了利用分子模拟的方法对它进行研究。本文就是在这种研究背景下,介绍了对类金刚石薄膜分子动力学研究的发展情况,并且对各个时期具有代表性的研究进行了简要的总结。然后,在文章的末尾指出了类金刚石模拟所面临的一些关键问题,并对其未来的研究方向进行了展望。

The research and application of the diamond-like carbon films are very extensive since it was found due to the superior properties. Therefore, we had begun to study using molecular simulation methods in order to get better properties and explore better structure as early as the 1980s. In this background, the paper describes the development of the case of the diamond-like carbon films’ study, and gives a brief summary for the representative study of each period. Then, we point out some of the key issues that the diamond-like simulation faces and give the prospect for its future development at the end of this paper.

文章引用:
杜敏永, 张铭, 魏纪周, 邓浩亮, 楚上杰, 任坤. 类金刚石薄膜的分子动力学研究[J]. 材料科学, 2014, 4(4): 145-151. http://dx.doi.org/10.12677/MS.2014.44022

参考文献

[1] Aisenberg, S. and Chabot, R. (1971) Ion-beam deposition of thin films of diamond-like carbon. Journal of Applied Physics, 42, 2953-2958.
[2] 张碧云, 曲燕青, 谢红梅, 聂朝胤 (2007) 类金刚石膜的制备技术及应用领域概况. 表面技术, 3, 70-73.
[3] Weiler, M., Sattel, S. and Giessen, T. (1996) Preparation and properties of highly tetrahedral hydrogenated amorphous carbon. Physicals Review B, 53, 1594-1608.
[4] Robertson, J. (2002) Diamond-like amorphous carbon. Materials Science and Engineering, 37, 129-281.
[5] Jakse, N. and Pasturel, A. (2007) Liq-uid-liquid phase transformation in silicon: Evidence from first-principles molecular dynamics simulations. Physical Review Letters, 99, 2-5.
[6] Beeman, D., Silverman, J., McKenzie, R. and Goringe, C.M. (1984) Modeling studies of amorphous carbon. Physicals Review B, 30, 870-875.
[7] Robertson, J. and O’ Reillh, E.P. (1987) Electronic and atomic structure of amorphous carbon. Physical Review Letters, 35, 2946-2957.
[8] Keating, P.N. (1996) Theory of the third-order elastic constants of diamond-like crystals. Physical Review, 149, 674- 678.
[9] Tersoff, J. (1988) Empirical interatomic potential for carbon, with applications to amorphous carbon. Physical Review Letters, 61, 2879-2882.
[10] Tersoff, J. (1991) Structural properties of sp3-bonded hydrogenated amorphous carbon. Physicals Review B, 44, 12039-12042.
[11] Brenner, D. (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physicals Review B, 42, 9458-9471.
[12] Heggie, M.I. (1991) Semiclassical interatomic potential for carbon and its application to the self-interstitial in graphite. Journal of Physics: Condensed Matter, 3, 3065-3079.
[13] Kelires, P.C. (1993) Structural properties and energetics of amorphous forms of carbon. Physicals Review B, 47, 1829-1839.
[14] Kelires, P.C. (1994) Elastic properties of amorphous carbon networks. Physical Review Letters, 73, 2460-2463.
[15] Wang, C.Z., Ho, K.M. and Chan, C.T. (1993) Tight-binding molecular-dynamics study of amorphous carbon. Physical Review Letters, 70, 611-614.
[16] Wang, C.Z. and Ho, K.M. (1993) Structure, dynamics, and electronic properties of diamond-like amorphous carbon. Physical Review Letters, 71, 1184-1187.
[17] Frauenheim, Th., Blaudeck, P., Stephan, U. and Jungnickel, G. (1993) Atomic structure and physical properties of amorphous carbon and its hydrogenated analogs. Physical Review B, 48, 4823-4834.
[18] Jungnickel, G., Frauenheim, Th., Proezag, D., Stephan, U. and Newport, R.J. (1994) Structural properties of amorphous hydrogenated carbon. IV. A molecular-dynamics investigation and comparison to experiments. Physical Review B, 50, 6709-6716.
[19] Stephan, U., Frauenheim, Th., Blaudeck, P. and Jungnickel, G. (1994) π-bonding versus electronic defect generation: An examination of band gap properties in amorphous carbon. Physical Review B, 49, 1489-1501.
[20] Frauenheim, Th., Jungnickel, G., Stephan, U., Blaudeck, P., Deutschmann, S., Weiler, M., Sattel, S., Jung, K. and Ehrhardt, H. (1994) Atomic-scale structure and electronic properties of highly tetrahedral hydrogenated amorphous carbon. Physical Review B, 50, 7940-7945.
[21] Chen, C.W. and Robertson, J. (1998) Nature of disorder and localization in amorphous carbon. Journal of Non-Crys- talline Solids, 227-230, 602-606.
[22] Robertson, J. (1999) Relationship between sp2 carbon content and E04 optical gap in amorphous carbon-based materials. B Philosophical Magazine, 75, 3650-3653.
[23] Drabold, D.A., Fedders, P.A. and Strumm, P. (1994) Theory of diamondlike amorphous carbon. Physical Review B, 49, 16415-16422.
[24] Drabold, D.A., Fedders, P.A. and Grumbach, M. (1996) Gap formation and defect states in tetrahedral amorphous carbon. Physical Review B, 54, 5480-5484.
[25] Galli, G., Martin, R.M., Car, R. and Parrinello, M. (1989) Structural and electronic properties of amorphous carbon. Physical Review Letters, 62, 555-558.
[26] Galli, G., Martin, R.M., Car, R. and Parrinello, M. (1990) Ab initio calculation of properties of carbon in the amorphous and liquid states. Physical Review B, 42, 7470-7482.
[27] Iarlori, S., Galli, G. and Martini, O. (1994) Microscopic structure of hydrogenated amorphous carbon. Physical Review B, 49, 7060-7063.
[28] Schultz, P.A. and Stechel, E.B. (1998) Effects of basis set quality on the prediction of structures, energies, and properties of amorphous tetrahedral carbon. Physical Review B, 57, 3295-3304.
[29] Schultz, P.A., Leung, K. and Stechel, E.B. (1999) Small rings and amorphous tetrahedral carbon. Physical Review B, 59, 733-741.
[30] Jager, H.U. and Belov, A.Y. (2003) ta-C deposition simulations: Film properties and time-resolved dynamics of film formation. Physical Review B, 68, Article ID: 024201.
[31] Belov, A.Y. (2003) Atomic scale simulation of structural relaxation processes in tetrahedral amorphous carbon. Computational Materials Science, 27, 30-35.
[32] Belov, A.Y. and Jager, H.U. (2005) Formation and evolution of sp2 clusters in amorphous carbon network as predicted by molecular dynamics annealing simulations. Diamond and Related Materials, 14, 1014-1018.
[33] Lifshitz, Y. (1999) Diamond-like carbon—present status. Diamond and Related Materials, 8, 1659-1676.
[34] Lifshitz, Y., Kasi, S.R. and Rabalais, J.W. (1989) Subplantation model for film growth from hyperthermal species: Application to diamond. Physical Review Letters, 62, 1290.
[35] Robertson, J. (1993) Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond and Related Materials, 2, 984-989.
[36] Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B. and Sinnott, S.B. (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14, 783-802.
[37] 马天宝, 胡元中, 王慧 (2006) 基于原子运动模型的类金刚石薄膜生长机理研究. 物理学报, 1, 480-486.
[38] Enke, K., Dimigen, H. and Hübsch, H. (1980) Frictional properties of diamondlike carbon layers. Applied Physics Letters, 36, 291-292.
[39] 王丽莉, 胡文军, 万强, 赵晓平 (2010) 第一原理分子动力学研究类金刚石薄膜的结合强度与摩擦性能. 分子科学学报, 6, 376-380.
[40] Mathioudakis, C., Kelires, P.C., Panagiotatos, Y., Patsalas, P., Charitidis, C. and Logothetidis, S. (2002) Nanomechanical properties of multilayered amorphous carbon structures. Physical Review B, 65, Article ID: 205203.
[41] Logothetidis, S., Kassavetis, S., Charitidis, C., Panayiotatos, Y. and Laskarakis, A. (2004) Nanoindentation studies of multilayer amorphous carbon films. Carbon, 42, 1133-1136.
[42] Zhao, J.P., Chen, Z.Y., Wang, X. and Shi, T.S. (2000) Electron field emission from tetrahedral amorphous carbon films with multilayer structure. Journal of Applied Physics, 87, 8098-8102.
[43] Halac, E.B., Burgos, E. and Reinoso, M. (2008) Amorphous carbon multilayered films studied by molecular dynamics simulations. Physical Review B, 77, 224101-1-224101-7.
[44] Joe, M., Moon, M.W., Oh, J., Lee, K.H. and Lee, K.R. (2012) Molecular dynamics simulation study of the growth of a rough amorphous carbon film by the grazing incidence of energetic carbon atoms. Carbon, 50, 404-410.
[45] Vijapur, S.H., Wang, D. and Botte, G.G. (2013) The growth of transparent amorphous carbon thin films from coal. Carbon, 54, 22-28.
[46] Fan, X., Nose, K., Diao, D. and Yoshida, T. (2013) Nanoindentation behaviors of amorphous carbon films containing nanocrystalline graphite and diamond clusters prepared by radio frequency sputtering. Applied Surface Science, 273, 816-823.
[47] Soininen, A., Levon, J., Katsikogianni, M., Myllymaa, K., Lappalainen, R., Konttinen, Y.T., Kinnari, T.J., Tiainen, V.M. and Missirlis, Y. (2011) In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. Journal of Materials Science: Materials in Medicine, 22, 629-636.
[48] Li, Y., Zhang, G.F., Hou, X.D. and Deng, D.W. (2013) Growth mechanism of carbon films from organic electrolytes. Journal of Materials Science, 48, 3505-3510.
[49] Li, X., Ke, P., Zheng, H. and Wang, A. (2013) Structural properties and growth evolution of diamond-like carbon films with different incident energies: A molecular dynamics study. Applied Surface Science, 273, 670-675.