钙钛矿太阳能电池中钙钛矿层及电子传输材料的制备研究
Investigation on Preparation of Perovskite Layer and Electron-Transport Materials for Perovskite Solar Cells
DOI: 10.12677/NAT.2015.51003, PDF, HTML, XML,  被引量 下载: 4,788  浏览: 14,362  国家自然科学基金支持
作者: 邓天郭, 黄忠兵:湖北大学物理与电子科学学院,湖北 武汉;高 云, 夏晓红:湖北大学材料科学与工程学院
关键词: 钙钛矿太阳能电池电子传输材料水热法Perovskite Solar Cells Electron Transfer Material Hydrothermal Method
摘要: 在有机无机杂化的卤素钙钛矿电池中,电子传输材料及其与吸收层之间的界面对提高光电转化效率起着重要作用。电子传输层的介观结构直接影响钙钛矿层的生长情况,而钙钛矿层的微结构决定了电池的稳定性和寿命。本文采用水热法制备TiO2纳米棒阵列薄膜作为电子传输材料,通过磁控溅射法在阵列薄膜与FTO衬底间插入致密TiO2阻挡层。研究结果发现TiO2阻挡层能够有效抑制电子空穴对在界面的复合,从而提高了开路电压。采用一步和两步化学溶液法制备了CH3NH3PbI3钙钛矿层,发现两步法制备的CH3NH3PbI3晶体质量明显提高,有效增加了电池的短路电流,其光电转换效率比一步法提高了一倍。
Abstract: In organic-inorganic hybrid halogen perovskite solar cell, the electron transport material and its interface with absorption layer play an important role in the efficiency of photoelectrical conversion. The mesoscopic structures of the electron-transport layer will directly influence the growth of perovskite layer, whose microstructures are crucial for the stability and life-span of solar cells. In this work, the layer of TiO2 nanorod arrays grown by hydrothermal method was used as the electron transport material, and a compact TiO2 thin film deposited on FTO substrate by magnetron sputtering as the blocking layer. It is found that the compact TiO2 layer can effectively inhibit the recombination of electron-hole pairs at interface and thus open-circuit voltage is raised. The perovskite layers were prepared via one-step or two-step chemical solution deposition. The quality of the two-step prepared perovskite layer is much better than the one-step one; the corresponding short-circuit current and efficiency are greatly enhanced compared with the former.
文章引用:邓天郭, 高云, 夏晓红, 黄忠兵. 钙钛矿太阳能电池中钙钛矿层及电子传输材料的制备研究[J]. 纳米技术, 2015, 5(1): 16-23. http://dx.doi.org/10.12677/NAT.2015.51003

参考文献

[1] Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050-6051.
[2] Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Mar-chioro, A., Moon, S.J., Baker, R.H., Yum, J.H., Moser, J.E., Grätzel, M. and Park, N.G. (2012) Lead iodide perovskite sensitized all-aolid-statesubmicron thin film mesoscopic solar cell with efficiency ex-ceeding 9%. Scientific Reports, 2, 591.
[3] Burschka, J., Pellet, N., Moon, S.J., Baker, R.H., Gao, P., Nazeeruddin, M.K. and Grätzel, M. (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-319.
[4] Zhou, H.P., Chen, Q., Li, G., Luo, S., Song, T.B., Duan, H.S., Hong, Z.R., You, J.B., Liu, Y.S. and Yang, Y. (2014) Interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546.
[5] Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. and Snaith, H.J. (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647.
[6] Xiao, Z.G. Bi, C., Shao, Y.C., Dong, Q.F., Wang, Q., Yuan, Y.B., Wang, C.G., Gao, Y.L. and Huang, J.S. (2014) Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & En-vironmental Science, 7, 2619-2623.
[7] Jeng, J.Y., Chiang, Y.F., Lee, M.H., Peng, S.R., Guo, T.F., Chen, P. and Wen, T.C. (2013) CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 25, 3727-3732.
[8] Park, N.-G. (2013) Organometal perovskite light absorbers toward a 20% efficiency low-cost sol-id-state mesoscopic solar cell. Journal of Physical Chemistry Letters, 4, 2423-2429.
[9] Ma, Y.Z., Wang, S.F., Zheng, L.L., Lu, Z.L., Zhang, D.F., Bian, Z.Q., Huang, C.H. and Xiao, L.X. (2014) Recent research developments of perovskite solar cells. Chinese Journal of Chemistry, 32, 957-963.
[10] Liu, M., Johnston, M. and Snaith, H.J. (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395-398.
[11] 王晓春, 张希艳 (2009) 材料现代分析与测试技.国防工业出版社, 北京.