有机化学研究  >> Vol. 3 No. 1 (March 2015)

钯催化烯丙基碳酸肟脱羧合成烯丙基肟
Palladium-Catalyzed Allyl Oxime from Allyloxycarbonyl Oxime

DOI: 10.12677/JOCR.2015.31012, PDF, HTML, XML, 下载: 2,370  浏览: 7,312  科研立项经费支持

作者: 蔡 波, 李文广, 皮少锋, 孙汉州:中南林业科技大学应用化学研究所,湖南 长沙

关键词: 脱羧烯丙基肟Palladium Decarboxylation Allyl Oxime

摘要: 肟类化合物是一类重要的含氮化合物,广泛存在于天然产物、药物和活性物质的一种单元结构,是一种重要的有机合成中间体。研究了在钯催化条件下烯丙基碳酸肟脱羧反应,发展了一种反应条件温和,原料便宜易得,对环境友好的合成烯丙基肟方法,在常温下,以Pd(PPh3)4为催化剂,DCM为溶剂的反应体系中,反应8分钟就可以得到较高收率的烯丙基肟。并对该反应可能的机理进行了探讨。
Abstract: Oximes, which are important classes of nitrogen compounds, are ubiquitous in natural products, drugs as well as materials, and are important intermediates in organic synthesis. We have devel-oped a mild and convenient protocol for the synthesis of allyl oximes. In the presence of Pd(PPh3)4 and DCM, allyloxycarbonyl oximes successfully underwent decaboxylate reaction at room tem-perature to afford the corresponding allyl oximes in moderate good yields in eight minutes. And the possible mechanism of the reaction was discussed.

文章引用: 蔡波, 李文广, 皮少锋, 孙汉州. 钯催化烯丙基碳酸肟脱羧合成烯丙基肟[J]. 有机化学研究, 2015, 3(1): 84-89. http://dx.doi.org/10.12677/JOCR.2015.31012

参考文献

[1] Weaver, J.D., Recio III, A., Grenning, A.J. and Tunge, J.A. (2011) Transition metal-catalyzed decarboxylative allylation and benzylation reactions. Chemical Reviews, 111, 1846-1913. Trivedi, R. and Tunge, J.A. (2009) Regioselective iron-catalyzed decarboxylative allylic etherification. Organic Letters, 11, 5650-5652. Goossen, L.J., Goossen, K., Rodriguez, N., Blanchot, M., Linder, C. and Zimmermann, B. (2008) New catalytic trans-formations of carboxylic acids. Pure and Applied Chemical, 80, 1725-1733.
[2] Gigant, N., Boissarie, L.C. and Gil-laizeau, I. (2013) Direct site-selective arylation of enamides via a decarboxylative cross-coupling reaction. Organic Letters, 15, 816-819. Shang, R., Yang, Z.W., Wang, Y., Zhang, S.L. and Liu, L. (2010) Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with aryl halides and triflates. Journal of the American Chemical Society, 132, 14391-14393.
[3] Ranjit, S., Duan, Z.Y., Zhang, P.F. and Liu, X.G. (2010) Synthesis of vinyl sulfides by cop-per-catalyzed decarboxylative C-S cross-coupling. Organic Letters, 12, 4134-4136. Xing, D. and Yang, D. (2010) Gold(I)-catalyzed highly regio- and stereoselective decarboxylative amination of allylic N-tosylcarbamates via base-induced aza-claisen rearrangement in water. Organic Letters, 12, 1068-1071.
[4] Torregrosa, R.R.P., Ariyarathna, R.Y., Chattopadhyay, K. and Tunge, J.A. (2010) Decarboxylative benzylations of alkynes and ketones. Journal of the American Chemical Society, 132, 9280-9282. Colby, D.A., Bergman, R.G. and Ellman, J. (2010) Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chemical Reviews, 110, 624-655.
[5] Shintani, R., Murakami, M. and Hayashi, T. (2009) Ste-reoselective synthesis of nipecotic acid derivatives via palladium-catalyzed decarboxylative cyclization of γ-methylidene-δ-valerolactones with imines. Organic Letters, 11, 457-459.
[6] Yeagley, A.A., Lowder, M.A. and Chruma, J.J. (2009) Tandem C-C bond-forming processes: Interception of the Pd-cat- alyzed decarboxylative allylation of allyl diphenylglycinate imines with activated olefins Organic Letters, 11, 4022.
[7] Lorna, E.T.S., Doret, V.B., Nicole, L., Wil, H.F.G., Johan, W.M. and Inge, C.G. (2004) Comparative study of the effects of ceftizoxime, piperacillin, and piperacillin-tazobactam concentrations on antibacterial activity and selection of antibiotic-resistant mutants of Enterobacter cloacae and Bacteroides fragilis in vitro and in vivo in mixed-infection abscesses. Antimicrobial Agents and Chemotherapy, 48, 1688-1698.
[8] Abdul-Kader, N., El-Abd, S.H., Abbas, A.I.F. and Gomaa, M.A.S. (2013) Evalu-ation of antimicrobial activity of some newly synthesized 4-thiazolidinones saleh. Journal of the Chinese Chemical So-ciety, 60, 1234-1240.
[9] Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. and Kabilan, S. (2009) Synthesis, spectral, crystal and antimicrobial studies of biologically potent oxime ethers of nitrogen, oxygen and sulfur. Heterocycles Bioorganic & Medicinal Chemistry Letters, 19, 2981-2985.
[10] Santosusso, T.M. and Swern, D. (1974) Acid catalysis as a basis for a mechanistic rationale of some dimethyl sulfoxide reactions. Tetrahedron Letters, 48, 4255-4258.
[11] McDonagh, C. and Leary, P. (2009) Electrostatically immobilised BOX and PYBOX metal catalysts: application to ene reactions. Tetrahedron Letters, 50, 979-982.
[12] Davies, S.G., Fox, J.F., Jones, S., Price, A.J., Sanz, M.A., Sellers, T.G.R., Smith, A.W.D. and Teixeira, F.A.C. (2002) The [2,3]sigmatropic rearrangement of N-benzyl-O-allylhydroxylamines. Journal of the Chemical Society, Perkin Transactions 1, 15, 1757-1765.
[13] Davies, S.G., Jones, S., Sanz, M.L.A., Teixeira, F.C. and Fox, J.F. (1998) A novel [2,3] intramolecular rearrangement of N-benzyl-O-allylhydroxylamines. Chemical Communications, 20, 2235-2236.
[14] Hiraku, S., Noyuki, Y. and Moritaka, T. (1980) The preparation of oxime ethers phase transfer condition. Chemistry Letters, 869-870.
[15] Pi, S.-F., Tang, B.-X., Li, J.-H., Liu, Y.-L. and Liang, Y. (2009) Palladium-catalyzed decarboxylative coupling of allylic alkynoates with arynes. Organic Letters, 11, 2309-2312.