附着铜箔式电阻应变传感器测量钢丝网水泥板平均应变实验研究
An Experimental Study on Measuring Average Strain of Ferrocement Plate by Using Resistive Strain Sensor Pasted on Copper Foil
DOI: 10.12677/JSTA.2015.32002, PDF, HTML, XML, 下载: 2,267  浏览: 7,088  科研立项经费支持
作者: 吴小勇*:三峡库区地质灾害教育部重点实验室,湖北 宜昌 三峡大学土木与建筑学院,湖北 宜昌;雷 倩:三峡大学土木与建筑学院,湖北 宜昌
关键词: 电阻式应变传感器钢丝网水泥应力应变曲线铜箔裂缝Resistive Strain Sensor Ferrocement Stress-Strain Curve Copper Foil Crack
摘要: 提出将电阻应变传感器黏贴在薄而延性很好的铜箔上,用来测量钢丝网水泥板弯曲加载下的平均应变的方法。这种方法可以得到钢丝网水泥板受弯曲作用下一个完整的载荷–应变曲线。通过转换,通过弯曲应变数据结果计算出裂缝宽度,这包括初始裂缝宽度、最终裂缝宽度和载荷–裂缝宽度曲线。荷载-位移曲线和载荷–应变曲线表明,钢丝网水泥板具有良好的弯曲强度和抗裂性能。
Abstract: A method of using resistance strain sensor pasted on the thin copper with good ductility to measure the average strain of the ferrocement plate under the bending load is proposed. This method can get a full load and strain curve ferrocement plate under flexural load. By transformation, the crack width is calculated by the bending strain data including the initial crack width, final crack width and load curve of crack width. The load-displacement curve and the load-strain curve show that the ferrocement plate has good bending strength and crack resistance.
文章引用:吴小勇, 雷倩. 附着铜箔式电阻应变传感器测量钢丝网水泥板平均应变实验研究[J]. 传感器技术与应用, 2015, 3(2): 9-14. http://dx.doi.org/10.12677/JSTA.2015.32002

参考文献

[1] Arif, M., Pankaj and Kaushik, S.K. (1999) Mechanical behaviour of ferrocement composites: An experimental investigation. Cement and Concrete Composites, 21, 301-312.
[2] Al-Kubaisy, M.A. and Jumaat, M.Z. (2000) Flexural behaviour of reinforced concrete slabs with ferrocement tension zone cover. Construction and Building Materials, 14, 245-252.
[3] Masood, A., Arif, M., Akhtar, S. and Haquie, M. (2003) Performance of ferrocement panels in different environments. Cement and Concrete Research, 33, 555-562.
[4] Shannag, M.J. and Ziyyad, T.B. (2007) Flexural response of ferrocement with fibrous cementitious matrices. Construction and Building Materials, 21, 1198-1205.
[5] 宋小龙, 安继儒 (2007) 新编中外金属材料手册. 化学工业出版社, 北京.
[6] 艾亿谋, 杜成斌, 居发亮 (2008) 基于电阻率的混凝土裂缝测量方法. 东南大学学报(自然科学版), 2, 289-292.
[7] 蒲琪, 张怀清, 代祥俊, 云海, 张东焕 (2009) 数字散斑相关方法测量混凝土裂缝尖端演化过程. 徐州建筑职业技术学院学报, 3, 11-14.
[8] 邓鹏 (2010) 测量纤维增强喷射混凝土裂缝的新方法. 湖南交通科技, 1, 121-123.
[9] 黄定卫, 张莹, 赵建伟 (2011) 基于OTDR的混凝土裂缝测量技术. 光纤与电缆及其应用技术, 3, 31-33.
[10] Kohler, E.R. and Roesler, J.R. (2005) Crack width measurements in continuously reinforced concrete pavements. Journal of Transportation Engineering, 131, 645-652.
[11] Childs, P., Wong, A.C.L., Terry, W. and Peng, G.D. (2008) Measurement of crack formation in concrete using embedded optical fibre sensors and differential strain analysis. Measurement Science and Technology, 19, Article ID: 065301.
[12] Huangm P., Qi, Z., Huang, W.W. and Lu, Y. (2014) Automatic crack length measurement of concrete structure based on image processing. Advanced Materials Research, 1030-1032, 728-731.
[13] Seher, M., In, C.-W., Kim, J.-Y., Kurtis, K.E. and Jacobs, L.J. (2013) Numerical and experimental study of crack depth measurement in concrete using diffuse ultrasound. Journal of Nondestructive Evaluation, 32, 81-92.
[14] Haavik, D.J. (1990) Evaluating concrete cracking by measuring crack width. Concrete Construction—World of Concrete, 35, 553-554, 556.
[15] Yin, Z.Z., Wu, C.L. and Chen, G.D. (2014) Concrete crack detection through full-field displacement and curvature measurements by visual mark tracking: A proof-of-concept study. Structural Health Monitoring, 13, 205-218.