基于OpenFOAM对两气泡间相互作用的研究
Study of the Interaction between Two Bubbles Based on OpenFOAM
DOI: 10.12677/APP.2015.57009, PDF, HTML, XML, 下载: 2,731  浏览: 7,691  国家自然科学基金支持
作者: 郑 霞, 沈壮志*, 王 霞, 杨 佳, 李 丽:陕西师范大学物理学与信息技术学院,陕西 西安
关键词: SIMPLEC算法VOF模型气泡流场SIMPLEC Algorithm VOF Model Bubble Flow Field
摘要: 本文基于OpenFOAM软件,选用SIMPLEC算法,采用VOF模型中的PLIC界面几何重构方法,模拟研究了二维水平分布和竖直分布的两气泡在静水中运动时形状的变化,周围流场变化及气泡与流场相互影响的整个过程,同时还分析了气泡间距,容器宽度对气泡运动的影响。结果表明:不同时刻,气泡在上升过程中以不同的形状对称分布,且由于涡流场的存在引起水平分布的两气泡在上升过程中反复的相互吸引和排斥,呈摇摆状上升;而垂直分布的两气泡则会出现反复融合和分离的现象。气泡间距越大,两气泡间的相互作用越小。容器越宽,气泡运动受其影响越小。
Abstract: Applying the OpenFOAM software by adopting the SIMPLEC algorithm and VOF model of the PLIC, the motion characteristics of two bubbles (horizontal and vertical distribution) in still water were numerically simulated. The process of bubble shape deformation, the flow field changes around the bubbles, the interaction between the bubbles and flow field, and the influence of the separation distance and the width of container on bubbles motion were analyzed in detail. The results showed that the bubbles are symmetrically distributed in different shapes at different moments. Due to the existence of the vortex field, the two horizontal bubbles attract or repulse each other periodically in the process of rising, and meanwhile the bubbles will swing up. But, the two vertical distribution bubbles will coalesce or separate repeatedly. With the increasing distance of the two bubbles, the interaction strength becomes smaller. With the increasing width of the container, the influence of container on bubbles motion becomes smaller.
文章引用:郑霞, 沈壮志, 王霞, 杨佳, 李丽. 基于OpenFOAM对两气泡间相互作用的研究[J]. 应用物理, 2015, 5(7): 61-70. http://dx.doi.org/10.12677/APP.2015.57009

参考文献

[1] 康灿, 周亮, 王育力 (2013) 磨料水射流冲击材料壁面的模拟与实验. 江苏大学学报, 3, 276-280.
[2] Dahikar, S.K., Gulawani, S.S. and Joshi, J.B. (2007) Effect of nozzle diameter and its orientation on the flow pattern and plume dimensions in gas-liquid jet reactors. Chemical Engineering Science, 62, 7471-7483.
http://dx.doi.org/10.1016/j.ces.2007.08.035
[3] Zhou Q.L., Li, N. and Chen, X. (2009) Analysis of water drop erosion on turbine blades based on a nonlinear liquid solid impact model. International of Impact Engineering, 36, 1156-1171.
http://dx.doi.org/10.1016/j.ijimpeng.2009.02.007
[4] Lorstad, D. and Francois, M. (2004) Assessment of volume of fluid and immersed boundary methods for droplet calculations. International Journal for Number Methods in Fluids, 46, 106-125.
http://dx.doi.org/10.1002/fld.746
[5] Tryggvason, G., Bunner, B. and Esmaeeli, A. (2001) A front tracking method for the computations of multiphase flow. Journal of Computational Physics, 169, 708-759.
http://dx.doi.org/10.1006/jcph.2001.6726
[6] 宗智, 何亮, 张恩国 (2007) 水中结构物附近三维爆炸气泡的数值模拟. 水动力学研究与进展, 5, 592-602.
[7] 张阿漫, 姚熊亮 (2008) 近自由面水下爆炸气泡的运动规律研究. 物理学报, 1, 339-352.
[8] 张阿漫, 姚熊亮 (2008) 单个三维气泡的动力学特性研究. 应用力学学报, 1, 107-111.
[9] Osher, S. and Fedkiw, R.P. (2001) Level set methods, an overview and some recent results. Journal of Computional Physics, 169, 463-502.
http://dx.doi.org/10.1006/jcph.2000.6636
[10] Sussman, M., Smereka, P. and Osher, S. (1994) A level set approach for computing solutions to incompressible two-phase flow. Journal of Com-putional Physics, 114, 146-159.
http://dx.doi.org/10.1006/jcph.1994.1155
[11] Watanable, T. and Ebihara, K. (2003) Numerical simulation of coalescence and breakup of rising droplets. Computational Fluids, 32, 832-834.
[12] Puckett, E.G., Almgren, A.S. and Bell, J.B. (1997) A high-order projection method for tracking fluid interfaces in variable density incompressible flows. Journal of Computional Physics, 130, 269-282.
http://dx.doi.org/10.1006/jcph.1996.5590
[13] 端木玉, 朱仁庆 (2007) 流体体积方程的求解方法. 江苏科技大学学报: 自然科学版, 2, 10-15.
[14] Robinson, P.B., Boulton-Stone, J.M. and Blake, J.R. (1995) Application of boundary integral method to the interaction of rising two-dimensional, deformable gas bubbles. Journal of Engineering Mathematics, 29, 393-412.
http://dx.doi.org/10.1007/BF00043975
[15] 焦焱 (2009) 气泡运动的格子Boltzmann方法模拟. 硕士论文, 哈尔滨工业大学, 哈尔滨.
[16] 张淑君, 吴锤结 (2008) 气泡之间相互作用的数值模拟. 水动力学研究与进展, 6, 683-684.