计算机科学与应用  >> Vol. 5 No. 9 (September 2015)

基于深度学习的云端大数据安全防护技术
Security Technology of the Cloud Big Data Based on Deep Learning

DOI: 10.12677/CSA.2015.59042, PDF, HTML, XML,  被引量 下载: 2,274  浏览: 7,147  国家自然科学基金支持

作者: 孙天凯*:徐州工程学院信电工程学院,江苏 徐州;大连理工大学电信学部,辽宁 大连;鲍蓉, 姜代红, 王奎:徐州工程学院信电工程学院,江苏 徐州

关键词: DBN数据分析Hadoop智能分类DBN Data Analysis Hadoop Intelligent Classification

摘要: 云端海量大数据是数据分析的基础,数据本身的安全性和准确性,对数据分析的结果有重要影响。针对云端大数据的特性,融合Hadoop的海量大数据处理以及数字水印相关技术,提出了一种以深度信念网络(DBN)作为智能分类的机制,通过对数据进行多层的训练和调整,对云端海量数据进行计算,得到其分布式表示,进而获取数据的篡改和判断的依据。实验表明,Hadoop和AI的结合,很好的实现了云端海量大数据的安全防护。
Abstract: The cloud big data is the basis of the data analysis. The security and accuracy of the big data is es-sential to the result of data analysis. By combining Hadoop’s big data processing technology and digital watermarking technology, a classification with DBN as a smart strategy is proposed. The multilayer has been trained and adjusted by this scheme. The mass of data can be calculated and the distributed data can also be obtained which is the basis of the judgment of data tampering. The experiments show that the combination of Hadoop and AI is an effective method to the massive data security.

文章引用: 孙天凯, 鲍蓉, 姜代红, 王奎. 基于深度学习的云端大数据安全防护技术[J]. 计算机科学与应用, 2015, 5(9): 336-342. http://dx.doi.org/10.12677/CSA.2015.59042

参考文献

[1] Chen, T. and Liao, D.M. (2013) A study on fast post-processing massive data of casting numerical simulation on per-sonal computers. China Foundry, 10, 321-324.
[2] Zhou, P. and Dai, L.R. (2012) Combining information from mul-ti-stream features using deep neural network in speech recognition. Proceedings of 2012 IEEE 11th International Con-ference on Signal Processing (ICSP 2012), Beijing, 21-25 October 2012, 557-561.
http://dx.doi.org/10.1109/ICoSP.2012.6491549
[3] Hinton, G. (2013) Training Recurrent Neural Networks. Doctor of Philosophy Graduate, Department of Computer Science, University of Toronto, Toronto, 1-93.
[4] 朱珠 (2008) 基于Hadoop的海量数据处理模型研究和应用.北京邮电大学, 北京, 1-62.
[5] 刘鹏, 黄宜华, 陈卫卫 (2011) 实战Hadoop——开启通向云计算的捷径. 电子工业出版社, 北京.
[6] 周长建, 司震宇, 等 (2013) 基于Deep Learning网络态势感知建模方法研究. 东北农业大学学报, 5, 144-149.
[7] 奚雪峰, 周国栋 (2014) 基于Deep Learning的代词指代消解. 北京大学学报(自然科学版), 1, 100-110.
[8] 谢桂兰 (2010) 基于Hadoop Map Reduce模型的应用研究. 微型机与应用, 8, 4-7.
[9] 田秀霞 (2011) 基于Hadoop架构的分布式计算和存储技术及其应用. 上海电力学院学报, 1, 70-74.